Flood Exposure Notebook#
Explore S2S Metadata and API
This notebook walks through an example that explores the Space2Stats Metadata, and then uses the API to fetch flood data for various provinces within a country.
# !pip install space2stats-client matplotlib contextily
import pandas as pd
import geopandas as gpd
from shapely import from_geojson
import matplotlib.pyplot as plt # pip install matplotlib contextily
import contextily as ctx
from space2stats_client import Space2StatsClient
# Initialize the client
client = Space2StatsClient()
Query Metadata#
Each dataset in Space2Stats is stored as a STAC item. Metadata for each item can be explored through the following browser.
The get_topics
function retrieves a list of dictionaries with key details for each dataset. The keys in each dictionary are the item ids.
topics = client.get_topics()
pd.options.display.max_colwidth = None
topics
Item ID | name | description | source_data |
---|---|---|---|
space2stats_population_2020 | Population | Gridded population disaggregated by gender. | WorldPop gridded population, 2020, Unconstrained, UN-Adjusted, https://www.worldpop.org/methods/top_down_constrained_vs_unconstrained/ |
flood_exposure_15cm_1in100 | Population Exposed to Floods | Population where flood depth is greater than 15 cm, 1-in-100 return period. | Fathom 3.0 High Resolution Global Flood Maps Including Climate Scenarios, https://datacatalog.worldbank.org/search/dataset/0065653/Fathom-3-0---High-Resolution-Global-Flood-Maps-Including-Climate-Scenarios |
urbanization_ghssmod | Urbanization by population and by area | Urbanization is analyzed using the GHS-SMOD dataset, including comparisons with population | Global Human Settlement Layer (https://human-settlement.emergency.copernicus.eu/degurbaDefinitions.php) |
nighttime_lights | Nighttime Lights | Sum of luminosity values measured by monthly composites from VIIRS satellite. | World Bank - Light Every Night, https://registry.opendata.aws/wb-light-every-night/ |
climate | Standardized Precipitation Index (SPI) | Index for a given timescale measuring drought severity based on precipitation anomalies (SPI) | CHIRPS3 |
builtarea_ghsl | Built area | Built area (in m2) in 5-year epochs. Source data report built area as total m2 built in 100m pixels at a global scale. | https://human-settlement.emergency.copernicus.eu/datasets.php |
We can extract additional metadata like fields and descriptions using the item id.
properties = client.get_properties("flood_exposure_15cm_1in100")
properties
name | description | type | |
---|---|---|---|
0 | hex_id | H3 unique identifier | object |
1 | pop | Sum of Gridded Population, 2020 | float32 |
2 | pop_flood | Sum of population exposed to floods greater than 15 cm, 1 in 100 return period | float64 |
3 | pop_flood_pct | Percent of population exposed to floods greater than 15 cm, 1 in 100 return period | float64 |
Alternatively, we can also explore the fields avaialble via the API fields endpoint:
fields = client.get_fields()
fields
['sum_built_area_m_2030',
'ogc_fid',
'sum_pop_f_0_2020',
'sum_pop_f_10_2020',
'sum_pop_f_15_2020',
'sum_pop_f_1_2020',
'sum_pop_f_20_2020',
'sum_pop_f_25_2020',
'sum_pop_f_30_2020',
'sum_pop_f_35_2020',
'sum_pop_f_40_2020',
'sum_pop_f_45_2020',
'sum_pop_f_50_2020',
'sum_pop_f_55_2020',
'sum_pop_f_5_2020',
'sum_pop_f_60_2020',
'sum_pop_f_65_2020',
'sum_pop_f_70_2020',
'sum_pop_f_75_2020',
'sum_pop_f_80_2020',
'sum_pop_m_0_2020',
'sum_pop_m_10_2020',
'sum_pop_m_15_2020',
'sum_pop_m_1_2020',
'sum_pop_m_20_2020',
'sum_pop_m_25_2020',
'sum_pop_m_30_2020',
'sum_pop_m_35_2020',
'sum_pop_m_40_2020',
'sum_pop_m_45_2020',
'sum_pop_m_50_2020',
'sum_pop_m_55_2020',
'sum_pop_m_5_2020',
'sum_pop_m_60_2020',
'sum_pop_m_65_2020',
'sum_pop_m_70_2020',
'sum_pop_m_75_2020',
'sum_pop_m_80_2020',
'sum_pop_m_2020',
'sum_pop_f_2020',
'sum_pop_2020',
'pop',
'pop_flood',
'pop_flood_pct',
'ghs_11_count',
'ghs_12_count',
'ghs_13_count',
'ghs_21_count',
'ghs_22_count',
'ghs_23_count',
'ghs_30_count',
'ghs_total_count',
'ghs_11_pop',
'ghs_12_pop',
'ghs_13_pop',
'ghs_21_pop',
'ghs_22_pop',
'ghs_23_pop',
'ghs_30_pop',
'ghs_total_pop',
'sum_viirs_ntl_2012',
'sum_viirs_ntl_2013',
'sum_viirs_ntl_2014',
'sum_viirs_ntl_2015',
'sum_viirs_ntl_2016',
'sum_viirs_ntl_2017',
'sum_viirs_ntl_2018',
'sum_viirs_ntl_2019',
'sum_viirs_ntl_2020',
'sum_viirs_ntl_2021',
'sum_viirs_ntl_2022',
'sum_viirs_ntl_2023',
'sum_viirs_ntl_2024',
'sum_built_area_m_1975',
'sum_built_area_m_1980',
'sum_built_area_m_1985',
'sum_built_area_m_1990',
'sum_built_area_m_1995',
'sum_built_area_m_2000',
'sum_built_area_m_2005',
'sum_built_area_m_2010',
'sum_built_area_m_2015',
'sum_built_area_m_2020',
'sum_built_area_m_2025']
Extract H3 Data#
Let’s work with the subset of fields from the flood exposure item: ['pop', 'pop_flood', 'pop_flood_pct']
flood_vars = ['pop', 'pop_flood', 'pop_flood_pct']
We will define our AOIs by fetching admin boundaries from the GeoBoundaries project.
# Try fetching the boundaries
ISO3 = "SSD" # South Sudan
ADM = "ADM2" # Level 2 administrative boundaries
adm_boundaries = client.fetch_admin_boundaries(ISO3, ADM)
adm_boundaries.plot()
<Axes: >

client.get_summary?
Signature:
client.get_summary(
gdf: geopandas.geodataframe.GeoDataFrame,
spatial_join_method: Literal['touches', 'centroid', 'within'],
fields: List[str],
geometry: Optional[Literal['polygon', 'point']] = None,
) -> pandas.core.frame.DataFrame
Docstring:
Extract h3 level data from Space2Stats for a GeoDataFrame.
Parameters
----------
gdf : GeoDataFrame
The Areas of Interest
spatial_join_method : ["touches", "centroid", "within"]
The method to use for performing the spatial join between the AOI and H3 cells
- "touches": Includes H3 cells that touch the AOI
- "centroid": Includes H3 cells where the centroid falls within the AOI
- "within": Includes H3 cells entirely within the AOI
fields : List[str]
A list of field names to retrieve from the statistics table.
geometry : Optional["polygon", "point"]
Specifies if the H3 geometries should be included in the response.
Returns
-------
DataFrame
A DataFrame with the requested fields for each H3 cell.
File: c:\users\wb514197\repos\decat_space2stats\space2stats_client\src\space2stats_client\client.py
Type: method
Run API Calls
df = client.get_summary(
gdf=adm_boundaries,
spatial_join_method="centroid",
fields=flood_vars,
geometry="polygon"
)
pd.reset_option('display.max_colwidth')
df.head()
shapeName | shapeISO | shapeID | shapeGroup | shapeType | index_gdf | index_h3 | hex_id | geometry | pop | pop_flood | pop_flood_pct | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Morobo | 79223893B16328156709571 | SSD | ADM2 | 0 | 0 | 866ae1067ffffff | {"type":"Polygon","coordinates":[[[30.62327290... | 4204.4385 | 609.631552 | 0.144997 | |
1 | Morobo | 79223893B16328156709571 | SSD | ADM2 | 0 | 1 | 866ae106fffffff | {"type":"Polygon","coordinates":[[[30.68007919... | 4776.9630 | 459.478346 | 0.096186 | |
2 | Morobo | 79223893B16328156709571 | SSD | ADM2 | 0 | 2 | 866ae114fffffff | {"type":"Polygon","coordinates":[[[30.61445415... | 3752.4004 | 341.734756 | 0.091071 | |
3 | Morobo | 79223893B16328156709571 | SSD | ADM2 | 0 | 3 | 866ae116fffffff | {"type":"Polygon","coordinates":[[[30.60563958... | 3304.6606 | 392.324178 | 0.118718 | |
4 | Morobo | 79223893B16328156709571 | SSD | ADM2 | 0 | 4 | 866ae132fffffff | {"type":"Polygon","coordinates":[[[30.84166572... | 7512.3320 | 865.229318 | 0.115175 |
Check that there are no duplicate hexagon ids
df['hex_id'].duplicated().sum()
0
Convert geometry column from geojson into shapely polygons
df["geometry"] = df["geometry"].apply(lambda geom: from_geojson(geom))
gdf = gpd.GeoDataFrame(df, geometry="geometry", crs="EPSG:4326")
gdf.head()
shapeName | shapeISO | shapeID | shapeGroup | shapeType | index_gdf | index_h3 | hex_id | geometry | pop | pop_flood | pop_flood_pct | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Morobo | 79223893B16328156709571 | SSD | ADM2 | 0 | 0 | 866ae1067ffffff | POLYGON ((30.62327 3.62973, 30.63632 3.66096, ... | 4204.4385 | 609.631552 | 0.144997 | |
1 | Morobo | 79223893B16328156709571 | SSD | ADM2 | 0 | 1 | 866ae106fffffff | POLYGON ((30.68008 3.60768, 30.69312 3.63891, ... | 4776.9630 | 459.478346 | 0.096186 | |
2 | Morobo | 79223893B16328156709571 | SSD | ADM2 | 0 | 2 | 866ae114fffffff | POLYGON ((30.61445 3.68759, 30.6275 3.71879, 3... | 3752.4004 | 341.734756 | 0.091071 | |
3 | Morobo | 79223893B16328156709571 | SSD | ADM2 | 0 | 3 | 866ae116fffffff | POLYGON ((30.60564 3.7454, 30.61869 3.77659, 3... | 3304.6606 | 392.324178 | 0.118718 | |
4 | Morobo | 79223893B16328156709571 | SSD | ADM2 | 0 | 4 | 866ae132fffffff | POLYGON ((30.84167 3.59938, 30.85469 3.6306, 3... | 7512.3320 | 865.229318 | 0.115175 |
Map hexagon data
fig, ax = plt.subplots(1, 1, figsize=(10, 10))
gdf.plot(ax=ax, column="pop_flood_pct",
legend=True, cmap="Reds", alpha=0.75,
scheme="equal_interval", k=5,
legend_kwds=dict(title='% Pop. Exposed', fmt="{:.0%}"),
linewidth=0)
ctx.add_basemap(ax, source=ctx.providers.Esri.WorldPhysical, crs='EPSG:4326')
plt.axis("off")
plt.show()

Extract Admin Summaries#
adm_boundaries_zs = client.get_aggregate(
gdf=adm_boundaries,
spatial_join_method="centroid",
fields=['pop', 'pop_flood'],
aggregation_type="sum"
)
adm_boundaries_zs.head()
shapeName | shapeISO | shapeID | shapeGroup | shapeType | geometry | pop | pop_flood | |
---|---|---|---|---|---|---|---|---|
0 | Morobo | 79223893B16328156709571 | SSD | ADM2 | POLYGON ((30.56014 3.80448, 30.56025 3.80123, ... | 163323.45 | 18611.677807 | |
1 | Kajo-keji | 79223893B65724383376583 | SSD | ADM2 | POLYGON ((31.21043 4.02022, 31.09764 3.97353, ... | 323397.56 | 34155.373103 | |
2 | Lainya | 79223893B40788586970477 | SSD | ADM2 | POLYGON ((31.09684 3.73816, 31.097 3.738, 31.0... | 152762.36 | 17860.699796 | |
3 | Yei | 79223893B15931514297219 | SSD | ADM2 | POLYGON ((30.92897 3.92614, 30.92401 3.95754, ... | 338000.16 | 44152.720881 | |
4 | Juba | 79223893B61077901252755 | SSD | ADM2 | POLYGON ((31.72803 3.99162, 31.72429 4.00022, ... | 641935.60 | 99231.778778 |
Recalculate share of population exposed with aggregate data
adm_boundaries_zs.loc[:, "pop_flood_pct"] = adm_boundaries_zs["pop_flood"] / adm_boundaries_zs["pop"]
fig, ax = plt.subplots(1, 1, figsize=(10, 10))
adm_boundaries_zs.plot(
ax=ax, column="pop_flood_pct", legend=True,
cmap="Reds", scheme="natural_breaks",
k=5, legend_kwds=dict(title='% Pop. Exposed', fmt="{:.0%}"),
linewidth=0.2, edgecolor='black')
ctx.add_basemap(ax, source=ctx.providers.Esri.WorldPhysical, crs='EPSG:4326')
plt.axis("off")
plt.show()

List top 20 provinces by population exposed
table = adm_boundaries_zs.sort_values('pop_flood_pct', ascending=False).head(20)[['shapeName', 'pop_flood', 'pop_flood_pct']].rename(
columns={
'shapeName': 'Province'
})
table.loc[:, "Population Exposed"] = table.loc[:, "pop_flood"].apply(lambda x: f"{x:,.0f}")
table.loc[:, "Population Exposed (%)"] = table.loc[:, "pop_flood_pct"].apply(lambda x: f"{x:.2%}")
table.reset_index(drop=True, inplace=True)
display(table[['Province', 'Population Exposed', 'Population Exposed (%)']])
Province | Population Exposed | Population Exposed (%) | |
---|---|---|---|
0 | Guit | 39,438 | 68.05% |
1 | Ulang | 91,703 | 65.99% |
2 | Leer | 54,570 | 63.61% |
3 | Malakal | 103,890 | 61.19% |
4 | Mayom | 110,430 | 56.28% |
5 | Mayendit | 50,026 | 54.05% |
6 | Gogrial West | 152,568 | 53.71% |
7 | Panyijiar | 46,028 | 53.33% |
8 | Panyikang | 43,152 | 53.03% |
9 | Melut | 40,606 | 52.15% |
10 | Fangak | 87,145 | 51.88% |
11 | Fashoda | 34,966 | 51.53% |
12 | Manyo | 33,179 | 48.29% |
13 | Koch | 57,514 | 47.25% |
14 | Twic | 110,514 | 46.91% |
15 | Baliet | 40,963 | 45.50% |
16 | Rumbek North | 25,182 | 44.86% |
17 | Gogrial East | 51,352 | 41.18% |
18 | Luakpiny/Nasir | 133,452 | 41.08% |
19 | Aweil South | 30,248 | 40.88% |