Flood Exposure Notebook

Flood Exposure Notebook#

Explore S2S Metadata and API

This notebook walks through an example that explores the Space2Stats Metadata, and then uses the API to fetch flood data for various provinces within a country.

import pandas as pd
import geopandas as gpd
from shapely import from_geojson
import matplotlib.pyplot as plt # pip install matplotlib contextily
import contextily as ctx
from space2stats_client import Space2StatsClient

# Initialize the client
client = Space2StatsClient()

Query Metadata#

Each dataset in Space2Stats is stored as a STAC item. Metadata for each item can be explored through the following browser.

The get_topics function retrieves a list of dictionaries with key details for each dataset. The keys in each dictionary are the item ids.

topics = client.get_topics()
pd.options.display.max_colwidth = None
topics
Item ID name description source_data
space2stats_population_2020 Population Gridded population disaggregated by gender. WorldPop gridded population, 2020, Unconstrained, UN-Adjusted, https://www.worldpop.org/methods/top_down_constrained_vs_unconstrained/
flood_exposure_15cm_1in100 Population Exposed to Floods Population where flood depth is greater than 15 cm, 1-in-100 return period. Fathom 3.0 High Resolution Global Flood Maps Including Climate Scenarios, https://datacatalog.worldbank.org/search/dataset/0065653/Fathom-3-0---High-Resolution-Global-Flood-Maps-Including-Climate-Scenarios
urbanization_ghssmod Urbanization by population and by area Urbanization is analyzed using the GHS-SMOD dataset, including comparisons with population Global Human Settlement Layer (https://human-settlement.emergency.copernicus.eu/degurbaDefinitions.php)
nighttime_lights Nighttime Lights Sum of luminosity values measured by monthly composites from VIIRS satellite. World Bank - Light Every Night, https://registry.opendata.aws/wb-light-every-night/

We can extract additional metadata like fields and descriptions using the item id.

properties = client.get_properties("flood_exposure_15cm_1in100")
properties
name description type
0 hex_id H3 unique identifier object
1 pop Sum of Gridded Population, 2020 float32
2 pop_flood Sum of population exposed to floods greater than 15 cm, 1 in 100 return period float64
3 pop_flood_pct Percent of population exposed to floods greater than 15 cm, 1 in 100 return period float64

Alternatively, we can also explore the fields avaialble via the API fields endpoint:

fields = client.get_fields()
fields
['sum_viirs_ntl_2024',
 'ogc_fid',
 'sum_pop_f_0_2020',
 'sum_pop_f_10_2020',
 'sum_pop_f_15_2020',
 'sum_pop_f_1_2020',
 'sum_pop_f_20_2020',
 'sum_pop_f_25_2020',
 'sum_pop_f_30_2020',
 'sum_pop_f_35_2020',
 'sum_pop_f_40_2020',
 'sum_pop_f_45_2020',
 'sum_pop_f_50_2020',
 'sum_pop_f_55_2020',
 'sum_pop_f_5_2020',
 'sum_pop_f_60_2020',
 'sum_pop_f_65_2020',
 'sum_pop_f_70_2020',
 'sum_pop_f_75_2020',
 'sum_pop_f_80_2020',
 'sum_pop_m_0_2020',
 'sum_pop_m_10_2020',
 'sum_pop_m_15_2020',
 'sum_pop_m_1_2020',
 'sum_pop_m_20_2020',
 'sum_pop_m_25_2020',
 'sum_pop_m_30_2020',
 'sum_pop_m_35_2020',
 'sum_pop_m_40_2020',
 'sum_pop_m_45_2020',
 'sum_pop_m_50_2020',
 'sum_pop_m_55_2020',
 'sum_pop_m_5_2020',
 'sum_pop_m_60_2020',
 'sum_pop_m_65_2020',
 'sum_pop_m_70_2020',
 'sum_pop_m_75_2020',
 'sum_pop_m_80_2020',
 'sum_pop_m_2020',
 'sum_pop_f_2020',
 'sum_pop_2020',
 'pop',
 'pop_flood',
 'pop_flood_pct',
 'ghs_11_count',
 'ghs_12_count',
 'ghs_13_count',
 'ghs_21_count',
 'ghs_22_count',
 'ghs_23_count',
 'ghs_30_count',
 'ghs_total_count',
 'ghs_11_pop',
 'ghs_12_pop',
 'ghs_13_pop',
 'ghs_21_pop',
 'ghs_22_pop',
 'ghs_23_pop',
 'ghs_30_pop',
 'ghs_total_pop',
 'sum_viirs_ntl_2012',
 'sum_viirs_ntl_2013',
 'sum_viirs_ntl_2014',
 'sum_viirs_ntl_2015',
 'sum_viirs_ntl_2016',
 'sum_viirs_ntl_2017',
 'sum_viirs_ntl_2018',
 'sum_viirs_ntl_2019',
 'sum_viirs_ntl_2020',
 'sum_viirs_ntl_2021',
 'sum_viirs_ntl_2022',
 'sum_viirs_ntl_2023']

Extract H3 Data#

Let’s work with the subset of fields from the flood exposure item: ['pop', 'pop_flood', 'pop_flood_pct']

flood_vars = ['pop', 'pop_flood', 'pop_flood_pct']

We will define our AOIs by fetching admin boundaries from the GeoBoundaries project.

# Try fetching the boundaries
ISO3 = "SSD" # South Sudan
ADM = "ADM2" # Level 2 administrative boundaries
adm_boundaries = client.fetch_admin_boundaries(ISO3, ADM)
adm_boundaries.plot()
<Axes: >
../_images/d23d7dce4cb3d0ae905b7c821822415d92e5a27b96069790896ffa85da86b2ff.png
client.get_summary?
Signature:
client.get_summary(
    gdf: geopandas.geodataframe.GeoDataFrame,
    spatial_join_method: Literal['touches', 'centroid', 'within'],
    fields: List[str],
    geometry: Optional[Literal['polygon', 'point']] = None,
) -> pandas.core.frame.DataFrame
Docstring:
Extract h3 level data from Space2Stats for a GeoDataFrame.

Parameters
----------
gdf : GeoDataFrame
    The Areas of Interest

spatial_join_method : ["touches", "centroid", "within"]
    The method to use for performing the spatial join between the AOI and H3 cells
        - "touches": Includes H3 cells that touch the AOI
        - "centroid": Includes H3 cells where the centroid falls within the AOI
        - "within": Includes H3 cells entirely within the AOI

fields : List[str]
    A list of field names to retrieve from the statistics table.

geometry : Optional["polygon", "point"]
    Specifies if the H3 geometries should be included in the response.

Returns
-------
DataFrame
    A DataFrame with the requested fields for each H3 cell.
File:      ~/Documents/WorldBank/Space2Stats/space2stats_client/src/space2stats_client/client.py
Type:      method

Run API Calls

df = client.get_summary(
    gdf=adm_boundaries, 
    spatial_join_method="centroid", 
    fields=flood_vars,
    geometry="polygon"
)
pd.reset_option('display.max_colwidth')
df.head()
shapeName shapeISO shapeID shapeGroup shapeType index_gdf index_h3 hex_id geometry pop pop_flood pop_flood_pct
0 Morobo 79223893B16328156709571 SSD ADM2 0 0 866ae1067ffffff {"type":"Polygon","coordinates":[[[30.62327290... 4204.4385 609.631552 0.144997
1 Morobo 79223893B16328156709571 SSD ADM2 0 1 866ae106fffffff {"type":"Polygon","coordinates":[[[30.68007919... 4776.9630 459.478346 0.096186
2 Morobo 79223893B16328156709571 SSD ADM2 0 2 866ae114fffffff {"type":"Polygon","coordinates":[[[30.61445415... 3752.4004 341.734756 0.091071
3 Morobo 79223893B16328156709571 SSD ADM2 0 3 866ae116fffffff {"type":"Polygon","coordinates":[[[30.60563958... 3304.6606 392.324178 0.118718
4 Morobo 79223893B16328156709571 SSD ADM2 0 4 866ae132fffffff {"type":"Polygon","coordinates":[[[30.84166572... 7512.3320 865.229318 0.115175

Check that there are no duplicate hexagon ids

df['hex_id'].duplicated().sum()
0

Convert geometry column from geojson into shapely polygons

df["geometry"] = df["geometry"].apply(lambda geom: from_geojson(geom))
gdf = gpd.GeoDataFrame(df, geometry="geometry", crs="EPSG:4326")
gdf.head()
shapeName shapeISO shapeID shapeGroup shapeType index_gdf index_h3 hex_id geometry pop pop_flood pop_flood_pct
0 Morobo 79223893B16328156709571 SSD ADM2 0 0 866ae1067ffffff POLYGON ((30.62327 3.62973, 30.63632 3.66096, ... 4204.4385 609.631552 0.144997
1 Morobo 79223893B16328156709571 SSD ADM2 0 1 866ae106fffffff POLYGON ((30.68008 3.60768, 30.69312 3.63891, ... 4776.9630 459.478346 0.096186
2 Morobo 79223893B16328156709571 SSD ADM2 0 2 866ae114fffffff POLYGON ((30.61445 3.68759, 30.6275 3.71879, 3... 3752.4004 341.734756 0.091071
3 Morobo 79223893B16328156709571 SSD ADM2 0 3 866ae116fffffff POLYGON ((30.60564 3.7454, 30.61869 3.77659, 3... 3304.6606 392.324178 0.118718
4 Morobo 79223893B16328156709571 SSD ADM2 0 4 866ae132fffffff POLYGON ((30.84167 3.59938, 30.85469 3.6306, 3... 7512.3320 865.229318 0.115175

Map hexagon data

fig, ax = plt.subplots(1, 1, figsize=(10, 10))
gdf.plot(ax=ax, column="pop_flood_pct", 
         legend=True, cmap="Reds", alpha=0.75, 
         scheme="equal_interval", k=5, 
         legend_kwds=dict(title='% Pop. Exposed', fmt="{:.0%}"),
         linewidth=0)
ctx.add_basemap(ax, source=ctx.providers.Esri.WorldPhysical, crs='EPSG:4326')
plt.axis("off")
plt.show()
../_images/1e7983a66863008e6ca1790485e76b5c2d940b0a9aeb5b2d51ff8929cdee8e20.png

Extract Admin Summaries#

adm_boundaries_zs = client.get_aggregate(
    gdf=adm_boundaries, 
    spatial_join_method="centroid", 
    fields=['pop', 'pop_flood'], 
    aggregation_type="sum"
)
adm_boundaries_zs.head()
notebook controller is DISPOSED. 

View Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details.

Recalculate share of population exposed with aggregate data

adm_boundaries_zs.loc[:, "pop_flood_pct"] = adm_boundaries_zs["pop_flood"] / adm_boundaries_zs["pop"]
notebook controller is DISPOSED. 

View Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details.
fig, ax = plt.subplots(1, 1, figsize=(10, 10))
adm_boundaries_zs.plot(
    ax=ax, column="pop_flood_pct", legend=True, 
    cmap="Reds", scheme="natural_breaks", 
    k=5, legend_kwds=dict(title='% Pop. Exposed', fmt="{:.0%}"),
    linewidth=0.2, edgecolor='black')
ctx.add_basemap(ax, source=ctx.providers.Esri.WorldPhysical, crs='EPSG:4326')
plt.axis("off")
plt.show()
notebook controller is DISPOSED. 

View Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details.

List top 20 provinces by population exposed

table = adm_boundaries_zs.sort_values('pop_flood_pct', ascending=False).head(20)[['shapeName', 'pop_flood', 'pop_flood_pct']].rename(
    columns={
        'shapeName': 'Province'
        })
table.loc[:, "Population Exposed"] = table.loc[:, "pop_flood"].apply(lambda x: f"{x:,.0f}")
table.loc[:, "Population Exposed (%)"] = table.loc[:, "pop_flood_pct"].apply(lambda x: f"{x:.2%}")
table.reset_index(drop=True, inplace=True)
display(table[['Province', 'Population Exposed', 'Population Exposed (%)']])