Flood Exposure Notebook#
Explore S2S Metadata and API
This notebook walks through an example that explores the Space2Stats Metadata, and then uses the API to fetch flood data for various provinces within a country.
# !pip install space2stats-client matplotlib contextily
import pandas as pd
import geopandas as gpd
from shapely import from_geojson
import matplotlib.pyplot as plt # pip install matplotlib contextily
import contextily as ctx
from space2stats_client import Space2StatsClient
# Initialize the client
client = Space2StatsClient(verify_ssl=False) # Set verify_ssl=False if you encounter SSL issues
# Supress InsecureRequestWarning
import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
Query Metadata#
Each dataset in Space2Stats is stored as a STAC item. Metadata for each item can be explored through the following browser.
The get_topics function retrieves a list of dictionaries with key details for each dataset. The keys in each dictionary are the item ids.
topics = client.get_topics()
pd.options.display.max_colwidth = None
topics
We can extract additional metadata like fields and descriptions using the item id.
properties = client.get_properties("flood_exposure_15cm_1in100")
properties
Alternatively, we can also explore the fields avaialble via the API fields endpoint:
fields = client.get_fields()
fields
Extract H3 Data#
Let’s work with the subset of fields from the flood exposure item: ['pop', 'pop_flood', 'pop_flood_pct']
flood_vars = ['pop', 'pop_flood', 'pop_flood_pct']
We will define our AOIs by fetching admin boundaries from the GeoBoundaries project.
# Try fetching the boundaries
ISO3 = "UGA" # Uganda
ADM = "ADM2" # Level 2 administrative boundaries
adm_boundaries = client.fetch_admin_boundaries(ISO3, ADM)
adm_boundaries.plot()
client.get_summary?
Run API Calls
df = client.get_summary(
gdf=adm_boundaries,
spatial_join_method="centroid",
fields=flood_vars,
geometry="polygon"
)
pd.reset_option('display.max_colwidth')
df.head()
Check that there are no duplicate hexagon ids
df['hex_id'].duplicated().sum()
Convert geometry column from geojson into shapely polygons
df["geometry"] = df["geometry"].apply(lambda geom: from_geojson(geom))
gdf = gpd.GeoDataFrame(df, geometry="geometry", crs="EPSG:4326")
gdf.head()
Map hexagon data
fig, ax = plt.subplots(1, 1, figsize=(10, 10))
gdf.plot(ax=ax, column="pop_flood_pct",
legend=True, cmap="Reds", alpha=0.75,
scheme="equal_interval", k=5,
legend_kwds=dict(title='% Pop. Exposed', fmt="{:.0%}"),
linewidth=0)
ctx.add_basemap(ax, source=ctx.providers.Esri.WorldPhysical, crs=3857)
plt.axis("off")
plt.show()
Extract Admin Summaries#
adm_boundaries_zs = client.get_aggregate(
gdf=adm_boundaries,
spatial_join_method="centroid",
fields=['pop', 'pop_flood'],
aggregation_type="sum"
)
adm_boundaries_zs.head()
Recalculate share of population exposed with aggregate data
adm_boundaries_zs.loc[:, "pop_flood_pct"] = adm_boundaries_zs["pop_flood"] / adm_boundaries_zs["pop"]
fig, ax = plt.subplots(1, 1, figsize=(10, 10))
adm_boundaries_zs.plot(
ax=ax, column="pop_flood_pct", legend=True,
cmap="Reds", scheme="natural_breaks",
k=5, legend_kwds=dict(title='% Pop. Exposed', fmt="{:.0%}"),
linewidth=0.2, edgecolor='black')
ctx.add_basemap(ax, source=ctx.providers.Esri.WorldPhysical, crs='EPSG:4326')
plt.axis("off")
plt.show()
List top 20 provinces by population exposed
table = adm_boundaries_zs.sort_values('pop_flood_pct', ascending=False).head(20)[['shapeName', 'pop_flood', 'pop_flood_pct']].rename(
columns={
'shapeName': 'Province'
})
table.loc[:, "Population Exposed"] = table.loc[:, "pop_flood"].apply(lambda x: f"{x:,.0f}")
table.loc[:, "Population Exposed (%)"] = table.loc[:, "pop_flood_pct"].apply(lambda x: f"{x:.2%}")
table.reset_index(drop=True, inplace=True)
display(table[['Province', 'Population Exposed', 'Population Exposed (%)']])