Access S2S API#
This notebook walks through an example of sending an API call directly
from typing import Dict
import folium as flm # Comment out if you have not installed, or run pip install folium matplotlib mapclassify
import geopandas as gpd
import numpy as np
import pandas as pd
import requests
from geojson_pydantic import Feature, Polygon
from lonboard import Map, ScatterplotLayer
from shapely import from_geojson
BASE_URL = "https://space2stats.ds.io"
FIELDS_ENDPOINT = f"{BASE_URL}/fields"
SUMMARY_ENDPOINT = f"{BASE_URL}/summary"
response = requests.get(FIELDS_ENDPOINT)
if response.status_code != 200:
raise Exception(f"Failed to get fields: {response.text}")
available_fields = response.json()
print("Available Fields:", available_fields)
Available Fields: ['pop_flood_pct', 'ogc_fid', 'sum_pop_f_0_2020', 'sum_pop_f_10_2020', 'sum_pop_f_15_2020', 'sum_pop_f_1_2020', 'sum_pop_f_20_2020', 'sum_pop_f_25_2020', 'sum_pop_f_30_2020', 'sum_pop_f_35_2020', 'sum_pop_f_40_2020', 'sum_pop_f_45_2020', 'sum_pop_f_50_2020', 'sum_pop_f_55_2020', 'sum_pop_f_5_2020', 'sum_pop_f_60_2020', 'sum_pop_f_65_2020', 'sum_pop_f_70_2020', 'sum_pop_f_75_2020', 'sum_pop_f_80_2020', 'sum_pop_m_0_2020', 'sum_pop_m_10_2020', 'sum_pop_m_15_2020', 'sum_pop_m_1_2020', 'sum_pop_m_20_2020', 'sum_pop_m_25_2020', 'sum_pop_m_30_2020', 'sum_pop_m_35_2020', 'sum_pop_m_40_2020', 'sum_pop_m_45_2020', 'sum_pop_m_50_2020', 'sum_pop_m_55_2020', 'sum_pop_m_5_2020', 'sum_pop_m_60_2020', 'sum_pop_m_65_2020', 'sum_pop_m_70_2020', 'sum_pop_m_75_2020', 'sum_pop_m_80_2020', 'sum_pop_m_2020', 'sum_pop_f_2020', 'sum_pop_2020', 'pop', 'pop_flood']
AOIModel = Feature[Polygon, Dict]
# ~burundi
minx, miny, maxx, maxy = 29.038924, -4.468958, 30.850461, -2.310523
aoi = {
"type": "Feature",
"geometry": {
"type": "Polygon",
"coordinates": [
[
[minx, maxy],
[minx, miny],
[maxx, miny],
[maxx, maxy],
[minx, maxy],
]
],
},
"properties": {"name": "Updated AOI"},
}
feat = AOIModel(**aoi)
# Define the Request Payload
request_payload = {
"aoi": aoi,
"spatial_join_method": "touches",
"fields": ["sum_pop_2020"],
"geometry": "polygon",
}
# Get Summary Data
response = requests.post(SUMMARY_ENDPOINT, json=request_payload)
if response.status_code != 200:
raise Exception(f"Failed to get summary: {response.text}")
summary_data = response.json()
df = pd.DataFrame(summary_data)
df["geometry"] = df["geometry"].apply(lambda geom: from_geojson(geom))
gdf = gpd.GeoDataFrame(df, geometry="geometry", crs="EPSG:4326")
gdf.head()
hex_id | geometry | sum_pop_2020 | |
---|---|---|---|
0 | 866ad8087ffffff | POLYGON ((30.10399 -2.3257, 30.11745 -2.29278,... | 25345.874701 |
1 | 866ad808fffffff | POLYGON ((30.16219 -2.34876, 30.17563 -2.31584... | 11870.360712 |
2 | 866ad8097ffffff | POLYGON ((30.05471 -2.36355, 30.06817 -2.33062... | 19034.332476 |
3 | 866ad809fffffff | POLYGON ((30.11291 -2.38662, 30.12636 -2.35369... | 14700.551092 |
4 | 866ad80c7ffffff | POLYGON ((30.26964 -2.33398, 30.28307 -2.30106... | 12067.935215 |
m = gdf.explore(
column="sum_pop_2020",
tooltip="sum_pop_2020",
cmap="YlGnBu",
legend=True,
scheme="naturalbreaks",
legend_kwds=dict(colorbar=True, caption="Population", interval=False),
style_kwds=dict(weight=0, fillOpacity=0.8),
name="Population by Hexagon",
)
flm.LayerControl("topright", collapsed=False).add_to(m)
m
Make this Notebook Trusted to load map: File -> Trust Notebook
gdf.loc[:, "geometry"] = gdf.geometry.representative_point()
# Define custom breaks and corresponding RGBA colors
breaks = [
gdf["sum_pop_2020"].min(),
1,
1000,
10000,
50000,
100000,
200000,
gdf["sum_pop_2020"].max(),
]
colors = np.array(
[
[211, 211, 211, 255], # Light gray for 0
[255, 255, 0, 255], # Yellow for 1-1000
[255, 165, 0, 255], # Orange for 1000-10000
[255, 0, 0, 255], # Red for 10000-50000
[128, 0, 128, 255], # Purple for 50000-100000
[0, 0, 255, 255], # Blue for 100000-200000
[0, 0, 139, 255], # Dark blue for 200000+
]
)
# Function to assign colors based on custom bins
def assign_color(value, breaks, colors):
for i in range(len(breaks) - 1):
if breaks[i] <= value < breaks[i + 1]:
return colors[i]
return colors[-1] # In case value exceeds all breaks
# Map sum_pop_2020 values to colors using the custom function
gdf["color"] = gdf["sum_pop_2020"].apply(lambda x: assign_color(x, breaks, colors))
colors = np.uint8(gdf["color"].tolist())
# Create the scatterplot layer with the assigned colors
layer = ScatterplotLayer.from_geopandas(gdf, get_radius=2000, get_fill_color=colors)
m = Map(layer)
m