rsocialwatcher: Usage Examples
Source:vignettes/rsocialwatcher-vignette.Rmd
rsocialwatcher-vignette.Rmd
Table of Contents
Setup
First, we load relevant packages and create variables for our Facebook API keys.
## Load packages
library(rsocialwatcher)
library(tidyverse)
library(dplyr)
library(purrr)
library(lubridate)
library(jsonlite)
library(httr)
library(stringr)
library(knitr)
library(kableExtra)
library(leaflet)
library(sf)
## Set Facebook Keys
TOKEN <- "TOKEN-HERE"
CREATION_ACT <- "CREATION-ACT-HERE"
VERSION <- "VERSION-HERE"
The rsocialwatcher
package provides the following
functions:
-
get_fb_parameter_ids()
: To obtain IDs for targeting users by different characteristics, including (1) different parameter types (eg, behaviors and interests) and (2) location keys (eg, city keys) -
get_location_coords()
: To obtain coordinates and, when available, geometries of locations based on their location keys. -
query_fb_marketing_api()
: Query daily and monthly active users, querying users for specific locations and by specific types. -
get_fb_suggested_radius()
: Determine a suggested radius to reach enough people for a given coordinate pair.
Querying Parameter IDs
The get_fb_parameter_ids
function facilitates querying
IDs to target specific types of users (e.g., users with specific
interests) and to target users in specific locations (eg, countries,
cities, etc).
User Type IDs
Targeting specific types of users can be done along a number of
categories, including by users’ interests, behaviors, job, etc. Using
the get_fb_parameter_ids
function, the type
parameter is used to query IDs for different types of categories. The
type
parameter allows for the following inputs:
- behaviors
- demographics
- interests
- income
- industries
- life_events
- family_statuses
- locales
- work_positions
- work_employers
- education_statuses
- relationship_statuses
- education_majors
- education_schools
IDs can then be used in the query_fb_marketing_api
function, which queries daily and monthly active Facebook users. For
each type
input, there is a parameter in the
query_fb_marketing_api
function to include the ID for the
specific type. For example, query_fb_marketing_api
has a
parameter for behaviors
to put behavior IDs.
behaviors_df <- get_fb_parameter_ids(type = "behaviors",
version = VERSION,
token = TOKEN)
behaviors_df %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%",
height = "300px")
id | name | type | path | description | real_time_cluster | audience_size_lower_bound | audience_size_upper_bound |
---|---|---|---|---|---|---|---|
6002714895372 | Frequent travellers | behaviors | Travel , Frequent travellers | People whose activities on Facebook suggest that they are frequent travellers. | FALSE | 1647123246 | 1937016938 |
6002714898572 | Small business owners | behaviors | Digital activities , Small business owners | People who list themselves as small business owners or own small business Pages on Facebook | FALSE | 38766796 | 45589753 |
6002764392172 | Facebook Payments users (90 days) | behaviors | Digital activities , Facebook Payments users (90 days) | People who have used Facebook payments in the past 90 days | FALSE | 551812 | 648932 |
6003808923172 | Early technology adopters | behaviors | Digital activities , Early technology adopters | People who are likely to adopt new technologies earlier than others | FALSE | 107522889 | 126446918 |
6003986707172 | Facebook access (OS): Windows 7 | behaviors | Digital activities , Operating system used , Facebook access (OS): Windows 7 | People who primarily access Facebook using Windows 7. | FALSE | 22318 | 26246 |
6003966451572 | Facebook access (OS): Mac OS X | behaviors | Digital activities , Operating system used , Facebook access (OS): Mac OS X | People who primarily access Facebook using Mac OS X | FALSE | 2329374 | 2739344 |
6003966450972 | Facebook access (OS): Windows Vista | behaviors | Digital activities , Operating system used , Facebook access (OS): Windows Vista | People who primarily access Facebook using Windows Vista | FALSE | 1088 | 1280 |
6003966466972 | Facebook access (OS): Windows XP | behaviors | Digital activities , Operating system used , Facebook access (OS): Windows XP | People who primarily access Facebook using Windows XP | FALSE | 375 | 442 |
6004386303972 | Facebook access (mobile): iPhone 4S | behaviors | Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPhone 4S | People who primarily access Facebook using an iPhone 4S mobile device. | FALSE | 8513 | 10012 |
6004383941372 | Facebook access (mobile): iPhone 4 | behaviors | Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPhone 4 | People who primarily access Facebook using an iPhone 4 mobile device. | FALSE | 3536 | 4159 |
6004386044572 | Facebook access (mobile): Android devices | behaviors | Mobile Device User , All Mobile Devices by Operating System , Facebook access (mobile): Android devices | People who primarily access Facebook using any Android mobile device | FALSE | 1726538017 | 2030408708 |
6004383149972 | Facebook access (mobile): feature phones | behaviors | Mobile Device User , Facebook access (mobile): feature phones | People who primarily access Facebook using a feature phone | FALSE | 3676947 | 4324090 |
6004383890572 | Facebook access (mobile): iPod Touch | behaviors | Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPod Touch | People who primarily access Facebook using an iPod Touch mobile device | FALSE | 53426 | 62830 |
6004385895772 | Facebook access (mobile): Windows phones | behaviors | Mobile Device User , All Mobile Devices by Operating System , Facebook access (mobile): Windows phones | People who primarily access Facebook using a Windows mobile device | FALSE | 23256 | 27350 |
6004384041172 | Facebook access (mobile): Apple (iOS) devices | behaviors | Mobile Device User , All Mobile Devices by Operating System , Facebook access (mobile): Apple (iOS) devices | People who primarily access Facebook using an Apple (iOS) mobile device | FALSE | 319822462 | 376111216 |
6004383806772 | Facebook access (mobile): iPad 3 | behaviors | Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPad 3 | People who primarily access Facebook using an iPad 3 mobile device. | FALSE | 78640 | 92481 |
6004383808772 | Facebook access (mobile): iPad 2 | behaviors | Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPad 2 | People who primarily access Facebook using an iPad 2 mobile device | FALSE | 2308 | 2715 |
6004383767972 | Facebook access (mobile): iPad 1 | behaviors | Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPad 1 | People who primarily access Facebook using an iPad 1 mobile device | FALSE | 1050528 | 1235422 |
6004386010572 | Facebook access (mobile): Samsung Android mobile devices | behaviors | Mobile Device User , All Mobile Devices by Brand , Facebook access (mobile): Samsung Android mobile devices | People who primarily access Facebook using a Samsung Android mobile device | FALSE | 479386047 | 563757992 |
6004385886572 | Facebook access (mobile): HTC Android mobile devices | behaviors | Mobile Device User , All Mobile Devices by Brand , Facebook access (mobile): HTC Android mobile devices | People who primarily access Facebook using an HTC Android mobile device. | FALSE | 481419 | 566149 |
6004385868372 | Facebook access(mobile): LG Android mobile devices | behaviors | Mobile Device User , All Mobile Devices by Brand , Facebook access(mobile): LG Android mobile devices | People who primarily access Facebook using an LG Android mobile device | FALSE | 8361310 | 9832901 |
6004385865172 | Facebook access (mobile): Sony Android mobile devices | behaviors | Mobile Device User , All Mobile Devices by Brand , Facebook access (mobile): Sony Android mobile devices | People who primarily access Facebook using a Sony Android mobile device | FALSE | 3469573 | 4080218 |
6004382299972 | Facebook access (mobile): all mobile devices | behaviors | Mobile Device User , Facebook access (mobile): all mobile devices | People who primarily access Facebook using mobile devices | FALSE | 1835336736 | 2158356002 |
6004383049972 | Facebook access (mobile): smartphones and tablets | behaviors | Mobile Device User , Facebook access (mobile): smartphones and tablets | People who primarily access Facebook using a smartphone or tablet device | FALSE | 1902422238 | 2237248552 |
6004385879572 | Facebook access (mobile): Motorola Android mobile devices | behaviors | Mobile Device User , All Mobile Devices by Brand , Facebook access (mobile): Motorola Android mobile devices | People who primarily access Facebook using a Motorola Android mobile device | FALSE | 64609022 | 75980211 |
6004854404172 | Facebook access: older devices and OS | behaviors | Digital activities , Facebook access: older devices and OS | People who primarily access Facebook on older devices or operating systems before Windows 7, Mac OS X or Windows NT 6.2. | FALSE | 680678837 | 800478313 |
6004883585572 | Facebook access (mobile): iPhone 5 | behaviors | Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPhone 5 | People who primarily access Facebook using an iPhone 5 mobile device | FALSE | 45032 | 52958 |
6004948896972 | Facebook Payments users (30 days) | behaviors | Digital activities , Facebook Payments users (30 days) | People who have used Facebook Payments in the past 30 days | FALSE | 224301 | 263779 |
6006298077772 | Facebook access (OS): Windows 8 | behaviors | Digital activities , Operating system used , Facebook access (OS): Windows 8 | People who primarily access Facebook using Facebook using Windows 8 | FALSE | 29797 | 35042 |
6007078565383 | New smartphone and tablet users | behaviors | Mobile Device User , New smartphone and tablet users | People who are new smartphone or tablet users. | FALSE | 66962232 | 78747586 |
6007481031783 | Owns: Galaxy S III devices | behaviors | Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy S III devices | People who likely own a Galaxy S III mobile device | FALSE | 57835 | 68014 |
6007847947183 | Console gamers | behaviors | Digital activities, Console gamers | People who have liked Pages related to console gaming or gaming systems | FALSE | 48803738 | 57393196 |
6008261969983 | Returned from travelling one week ago | behaviors | Travel , Returned from travelling one week ago | People whose activities on Facebook suggest that they returned from travelling within the past week | FALSE | 134248774 | 157876559 |
6008297697383 | Returned from travelling two weeks ago | behaviors | Travel , Returned from travelling two weeks ago | People whose activities on Facebook suggest that they returned from travelling within the past 2 weeks | FALSE | 207718684 | 244277173 |
6008868254383 | Owns: Kindle Fire | behaviors | Mobile Device User , All Mobile Devices by Brand, Amazon , Owns: Kindle Fire | People who are likely to own a Kindle Fire | FALSE | 8701 | 10233 |
6010095777183 | Facebook access (mobile): iPhone 5S | behaviors | Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPhone 5S | People who primarily access Facebook using an iPhone 5S mobile device. | FALSE | 353159 | 415315 |
6010095794383 | Facebook access (mobile): iPhone 5C | behaviors | Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPhone 5C | People who primarily access Facebook using an iPhone 5C mobile device | FALSE | 19522 | 22959 |
6010231666183 | Owns: LG G2 devices | behaviors | Mobile Device User , All Mobile Devices by Brand, LG , Owns: LG G2 devices | People who are likely to own LG G2 devices | FALSE | 13947 | 16402 |
6011191254383 | Owns: iPad 4 | behaviors | Mobile Device User , All Mobile Devices by Brand, Apple , Owns: iPad 4 | People who are likely to own an iPad 4 | FALSE | 322857 | 379681 |
6011191259183 | Owns: iPad Mini 1 | behaviors | Mobile Device User , All Mobile Devices by Brand, Apple , Owns: iPad Mini 1 | People who are likely to own an iPad Mini 1 | FALSE | 178147 | 209502 |
6011244513583 | Owns: iPad Air | behaviors | Mobile Device User , All Mobile Devices by Brand, Apple , Owns: iPad Air | People who are likely to own an iPad Air. | FALSE | 843068 | 991449 |
6011244510983 | Owns: iPad Mini 2 | behaviors | Mobile Device User , All Mobile Devices by Brand, Apple , Owns: iPad Mini 2 | People who are likely to own an iPad Mini 2. | FALSE | 466277 | 548342 |
6011390261383 | Owns: Huawei | behaviors | Mobile Device User , All Mobile Devices by Brand, Owns: Huawei | People who are likely to own a Huawei mobile device. | FALSE | 57109294 | 67160530 |
6015852294783 | Owns: Galaxy Y devices | behaviors | Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy Y devices | People who are likely to own a Galaxy Y mobile device. | FALSE | 2386 | 2806 |
6013016790183 | Owns: Galaxy S4 | behaviors | Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy S4 | People who are likely to own a Galaxy S4 mobile device | FALSE | 167130 | 196545 |
6013017211983 | Owns: Galaxy S III Mini | behaviors | Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy S III Mini | People who are likely to own a Galaxy S III Mini mobile device | FALSE | 29620 | 34834 |
6013017235183 | Galaxy Note II | behaviors | Mobile Device User , All Mobile Devices by Brand, Samsung , Galaxy Note II | FALSE | 2403 | 2826 | |
6013017236583 | Owns: Galaxy Grand | behaviors | Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy Grand | People who are likely to own a Galaxy Grand mobile device | FALSE | 62313 | 73281 |
6013017297383 | Curve 9220 | behaviors | Mobile Device User , All Mobile Devices by Brand, BlackBerry , Curve 9220 | FALSE | 188 | 222 | |
6013017308783 | Owns: Galaxy S 4 Mini | behaviors | Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy S 4 Mini | People who are likely to own a Galaxy S 4 Mini mobile device. | FALSE | 20103 | 23642 |
6013279353983 | Owns: Galaxy Note 3 | behaviors | Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy Note 3 | People who are likely to own a Galaxy Note 3 mobile device. | FALSE | 216220 | 254275 |
6013516370183 | Commuters | behaviors | Travel , Commuters | People who likely commute from their home to their workplace on weekdays | FALSE | 301135354 | 354135177 |
6014808618583 | Owns: Galaxy S5 | behaviors | Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy S5 | People who are likely to own a Samsung Galaxy S5 mobile device | FALSE | 320046 | 376375 |
6014809400783 | Owns: Nexus 5 | behaviors | Mobile Device User , All Mobile Devices by Brand, Google , Owns: Nexus 5 | People who are likely to own a Nexus 5 mobile device. | FALSE | 218636 | 257116 |
6014809859183 | Owns: HTC One | behaviors | Mobile Device User , All Mobile Devices by Brand, HTC , Owns: HTC One | People who are likely to own an HTC One mobile device | FALSE | 100299 | 117952 |
6015235495383 | Facebook access (network type): Wi-Fi | behaviors | Mobile Device User , Network Connection , Facebook access (network type): Wi-Fi | People who primarily access Facebook using a Wi-Fi network. | FALSE | 979480774 | 1151869391 |
6015441244983 | Owns: Galaxy Grand 2 | behaviors | Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy Grand 2 | People who are likely to own a Samsung Galaxy Grand 2 mobile device | FALSE | 64236 | 75542 |
6015547847583 | Facebook access (browser): Firefox | behaviors | Digital activities , Internet browser used , Facebook access (browser): Firefox | People who primarily access Facebook using Firefox | FALSE | 12715828 | 14953814 |
6015547900583 | Facebook access (browser): Chrome | behaviors | Digital activities , Internet browser used , Facebook access (browser): Chrome | People who primarily access Facebook using Google Chrome. | FALSE | 274211097 | 322472251 |
6015559470583 | Lives abroad | behaviors | Ex-pats , Lives abroad | People living outside their home country | FALSE | 201652135 | 237142911 |
6015593608983 | Facebook access (browser): Safari | behaviors | Digital activities , Internet browser used , Facebook access (browser): Safari | People who primarily access Facebook using Safari | FALSE | 39145924 | 46035607 |
6015593652183 | Facebook access (browser): Opera | behaviors | Digital activities , Internet browser used , Facebook access (browser): Opera | People who primarily access Facebook using Opera | FALSE | 7603548 | 8941773 |
6015593776783 | Facebook access (browser): Internet Explorer | behaviors | Digital activities , Internet browser used , Facebook access (browser): Internet Explorer | People who primarily access Facebook using Internet Explorer | FALSE | 330398 | 388549 |
6015683810783 | Facebook Page admins | behaviors | Digital activities , Facebook page admins, Facebook Page admins | People who are an admin of at least one Page on Facebook. | FALSE | 553015092 | 650345749 |
6016286626383 | Facebook access (mobile): tablets | behaviors | Mobile Device User , Facebook access (mobile): tablets | People who primarily access Facebook using a tablet. | FALSE | 1682261446 | 1978339461 |
6016916298983 | Lived in India (formerly Expats – India) | behaviors | Ex-pats , Lived in India (formerly Expats – India) | People who used to live in India who now live abroad | FALSE | 13971504 | 16430489 |
6016925328983 | Owns: Galaxy Tab S | behaviors | Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy Tab S | People who are likely to own a Samsung Galaxy Tab S mobile device. | FALSE | 59821 | 70350 |
6016925394583 | Owns: Galaxy Tab Pro | behaviors | Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy Tab Pro | People who are likely to own a Samsung Galaxy Tab Pro mobile device. | FALSE | 10879 | 12794 |
6016925404783 | Owns: Galaxy Tab 4 | behaviors | Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy Tab 4 | People who are likely to own a Samsung Galaxy Tab 4 mobile device | FALSE | 245369 | 288555 |
6016925643983 | Owns: Galaxy Tab 3 | behaviors | Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy Tab 3 | People who are likely to own a Galaxy Tab 3 mobile device. | FALSE | 342591 | 402888 |
6016925657183 | Owns: Galaxy Tab 2 | behaviors | Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy Tab 2 | People who are likely to own a Galaxy Tab 2 mobile device | FALSE | 34091 | 40092 |
6016925667383 | Galaxy Tab | behaviors | Mobile Device User , All Mobile Devices by Brand, Samsung , Galaxy Tab | People who are likely to own a Samsung Galaxy Tab | FALSE | 238 | 281 |
6016926254583 | Owns: Xperia M | behaviors | Mobile Device User , All Mobile Devices by Brand, Sony , Owns: Xperia M | People who are likely to own a Sony Xperia M mobile device | FALSE | 2830 | 3329 |
6016926310383 | Owns: Xperia SL | behaviors | Mobile Device User , All Mobile Devices by Brand, Sony , Owns: Xperia SL | People who are likely to own a Sony Xperia SLs | FALSE | 275 | 324 |
6016926471583 | Xperia T | behaviors | Mobile Device User , All Mobile Devices by Brand, Sony , Xperia T | People who are likely to own a Sony Xperia T | FALSE | 325 | 383 |
6016926528983 | Owns: Xperia Z | behaviors | Mobile Device User , All Mobile Devices by Brand, Sony , Owns: Xperia Z | People who are likely to own a Sony Xperia Z mobile device | FALSE | 5346 | 6287 |
6016926651383 | Owns: Xperia Z Ultra | behaviors | Mobile Device User , All Mobile Devices by Brand, Sony , Owns: Xperia Z Ultra | People who are likely to own a Sony Xperia Z Ultra mobile device | FALSE | 1715 | 2017 |
6017253486583 | Facebook access (network type): 2G | behaviors | Mobile Device User , Network Connection , Facebook access (network type): 2G | People who primarily access Facebook using a 2G network. | FALSE | 7345473 | 8638277 |
6017253511583 | Facebook access (network type): 3G | behaviors | Mobile Device User , Network Connection , Facebook access (network type): 3G | People who primarily access Facebook using a 3G network. | FALSE | 90743383 | 106714219 |
6017253531383 | Facebook access (network type): 4G | behaviors | Mobile Device User , Network Connection , Facebook access (network type): 4G | People who primarily access Facebook using a 4G network | FALSE | 791357471 | 930636386 |
6017535283383 | Owns: LG G3 | behaviors | Mobile Device User , All Mobile Devices by Brand, LG , Owns: LG G3 | People who are likely to own an LG G3 mobile device | FALSE | 35312 | 41527 |
6017831560783 | Owns: iPhone 6 Plus | behaviors | Mobile Device User , All Mobile Devices by Brand, Apple , Owns: iPhone 6 Plus | People who are likely to own an Apple iPhone 6 Plus mobile device | FALSE | 1063623 | 1250821 |
6017831572183 | Owns: iPhone 6 | behaviors | Mobile Device User , All Mobile Devices by Brand, Apple , Owns: iPhone 6 | People who are likely to own an iPhone 6 mobile device | FALSE | 2195840 | 2582309 |
6018413514983 | Anniversary (within 61-90 days) | behaviors | Anniversary , Anniversary (within 61-90 days) | People with an anniversary in 61-90 days | FALSE | 7391487 | 8692389 |
6018796980983 | Lived in Kenya (formerly Expats – Kenya) | behaviors | Ex-pats , Lived in Kenya (formerly Expats – Kenya) | People who used to live in Kenya who now live abroad | FALSE | 1386561 | 1630596 |
6018797004183 | Lived in Nigeria (formerly Expats – Nigeria) | behaviors | Ex-pats , Lived in Nigeria (formerly Expats – Nigeria) | People who used to live in Nigeria who now live abroad | FALSE | 2482332 | 2919223 |
6018797036783 | Lived in Cameroon (formerly Expats – Cameroon) | behaviors | Ex-pats , Lived in Cameroon (formerly Expats – Cameroon) | People who used to live in Cameroon who now live abroad | FALSE | 481462 | 566200 |
6018797091183 | Lived in Philippines (formerly Expats – Philippines) | behaviors | Ex-pats , Lived in Philippines (formerly Expats – Philippines) | People who used to live in the Philippines who now live abroad | FALSE | 9472597 | 11139775 |
6018797127383 | Lived in Cuba (formerly Expats – Cuba) | behaviors | Ex-pats , Lived in Cuba (formerly Expats – Cuba) | People who used to live in Cuba who now live abroad | FALSE | 1798545 | 2115089 |
6018797165983 | Lived in Ethiopia (formerly Expats – Ethiopia) | behaviors | Ex-pats , Lived in Ethiopia (formerly Expats – Ethiopia) | People who used to live in Ethiopia who now live abroad | FALSE | 985661 | 1159138 |
6018797373783 | Lived in Haiti (formerly Expats – Haiti) | behaviors | Ex-pats , Lived in Haiti (formerly Expats – Haiti) | People who used to live in Haiti who now live abroad | FALSE | 1474987 | 1734585 |
6018995113183 | Owns: iPad Air 2 | behaviors | Mobile Device User , All Mobile Devices by Brand, Apple , Owns: iPad Air 2 | People who are likely to own an iPad Air 2 mobile device | FALSE | 1485676 | 1747156 |
6019221024783 | Played Canvas games (yesterday) | behaviors | Digital activities , Canvas gaming , Played Canvas games (yesterday) | People who played a Canvas game yesterday. | FALSE | 1798290 | 2114790 |
6019221038183 | Played Canvas games (last 7 days) | behaviors | Digital activities , Canvas gaming , Played Canvas games (last 7 days) | People who played a Canvas game in the last 7 days. | FALSE | 2693022 | 3166994 |
6019221046583 | Played Canvas games (last 14 days) | behaviors | Digital activities , Canvas gaming , Played Canvas games (last 14 days) | People who played a Canvas game in the last 14 days. | FALSE | 3127062 | 3677426 |
6019098117583 | Owns: iPad Mini 3 | behaviors | Mobile Device User , All Mobile Devices by Brand, Apple , Owns: iPad Mini 3 | People who are likely to own an iPad Mini 3 mobile device. | FALSE | 98511 | 115849 |
6019098214783 | Owns: Galaxy Note 4 | behaviors | Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy Note 4 | People who are likely to own a Galaxy Note 4 mobile device. | FALSE | 175571 | 206472 |
6019164544783 | Owns: Karbonn | behaviors | Mobile Device User , All Mobile Devices by Brand, Owns: Karbonn | People who are likely to own a Karbonn mobile device. | FALSE | 54010 | 63516 |
6019164586183 | Owns: Micromax | behaviors | Mobile Device User , All Mobile Devices by Brand, Owns: Micromax | People who are likely to own a Micromax mobile device | FALSE | 300462 | 353344 |
6019164630583 | Owns: Xiaomi | behaviors | Mobile Device User , All Mobile Devices by Brand, Owns: Xiaomi | People who are likely to own a Xiaomi mobile device. | FALSE | 15062213 | 17713163 |
6019246164583 | Played Canvas games (last 3 days) | behaviors | Digital activities , Canvas gaming , Played Canvas games (last 3 days) | People who played a Canvas game in the last 3 days | FALSE | 2292640 | 2696145 |
6019366943583 | Lived in Spain (formerly Expats – Spain) | behaviors | Ex-pats , Lived in Spain (formerly Expats – Spain) | People who used to live in Spain who now live abroad | FALSE | 1632858 | 1920242 |
6019367014383 | Lived in France (formerly Ex-pats – France) | behaviors | Ex-pats , Lived in France (formerly Ex-pats – France) | People who used to live in France who now live abroad | FALSE | 2963593 | 3485186 |
6019367052983 | Lived in Germany (formerly Ex-pats – Germany) | behaviors | Ex-pats , Lived in Germany (formerly Ex-pats – Germany) | People who used to live in Germany who now live abroad | FALSE | 1535034 | 1805201 |
6019377644783 | Lived in Switzerland (formerly Ex-pats – Switzerland) | behaviors | Ex-pats , Lived in Switzerland (formerly Ex-pats – Switzerland) | People who used to live in Switzerland who now live abroad | FALSE | 300822 | 353767 |
6019396649183 | Lived in the United States (formerly Ex-pats – United States) | behaviors | Ex-pats , Lived in the United States (formerly Ex-pats – United States) | People who used to live in the United States who now live abroad | FALSE | 16864520 | 19832676 |
6019396657183 | Lived in Poland (formerly Ex-pats – Poland) | behaviors | Ex-pats , Lived in Poland (formerly Ex-pats – Poland) | People who used to live in Poland who now live abroad | FALSE | 1413694 | 1662505 |
6019396654583 | Lived in Italy (formerly Ex-pats – Italy) | behaviors | Ex-pats , Lived in Italy (formerly Ex-pats – Italy) | People who used to live in Italy who now live abroad | FALSE | 1724471 | 2027978 |
6019396650783 | Lived in Ireland (formerly Ex-pats – Ireland) | behaviors | Ex-pats , Lived in Ireland (formerly Ex-pats – Ireland) | People who used to live in Ireland who now live abroad | FALSE | 284070 | 334067 |
6019396638383 | Lived in Hungary (formerly Ex-pats – Hungary) | behaviors | Ex-pats , Lived in Hungary (formerly Ex-pats – Hungary) | People who used to live in Hungary who now live abroad | FALSE | 335965 | 395095 |
6019396764183 | Lived in Canada (formerly Expats – Canada) | behaviors | Ex-pats , Lived in Canada (formerly Expats – Canada) | People who used to live in Canada who now live abroad | FALSE | 1300278 | 1529128 |
6019452369983 | Lived in China (formerly Ex-pats – China) | behaviors | Ex-pats , Lived in China (formerly Ex-pats – China) | People who used to live in China who now live abroad | FALSE | 2099995 | 2469595 |
6019520122583 | Lived in Puerto Rico (formerly Ex-pats – Puerto Rico) | behaviors | Ex-pats , Lived in Puerto Rico (formerly Ex-pats – Puerto Rico) | People who used to live in Puerto Rico who now live abroad | FALSE | 1135306 | 1335121 |
6019564340583 | Lived in Brazil (formerly Ex-pats – Brazil) | behaviors | Ex-pats , Lived in Brazil (formerly Ex-pats – Brazil) | People who used to live in Brazil who now live abroad | FALSE | 4013738 | 4720156 |
6019564344583 | Lived in Indonesia (formerly Ex-pats – Indonesia) | behaviors | Ex-pats , Lived in Indonesia (formerly Ex-pats – Indonesia) | People who used to live in Indonesia who now live abroad | FALSE | 4262948 | 5013227 |
6019564383383 | Lived in South Africa (formerly Expats – South Africa) | behaviors | Ex-pats , Lived in South Africa (formerly Expats – South Africa) | People who used to live in South Africa who now live abroad | FALSE | 1268147 | 1491341 |
6019673233983 | Lived in Zimbabwe (formerly Ex-pats – Zimbabwe) | behaviors | Ex-pats , Lived in Zimbabwe (formerly Ex-pats – Zimbabwe) | People who used to live in Zimbabwe who now live abroad | FALSE | 883955 | 1039532 |
6019673448383 | Lived in Ghana (formerly Ex-pats – Ghana) | behaviors | Ex-pats , Lived in Ghana (formerly Ex-pats – Ghana) | People who used to live in Ghana who now live abroad | FALSE | 744976 | 876092 |
6019673501783 | Lived in Uganda (formerly Ex-pats – Uganda) | behaviors | Ex-pats , Lived in Uganda (formerly Ex-pats – Uganda) | People who used to live in Uganda who now live abroad | FALSE | 624515 | 734430 |
6019673525983 | Lived in Colombia (formerly Ex-pats – Colombia) | behaviors | Ex-pats , Lived in Colombia (formerly Ex-pats – Colombia) | People who used to live in Colombia who now live abroad | FALSE | 2916567 | 3429883 |
6019673762183 | Lived in Dominican Republic (formerly Ex-pats – Dominican Republic) | behaviors | Ex-pats , Lived in Dominican Republic (formerly Ex-pats – Dominican Republic) | People who used to live in the Dominican Republic who now live abroad | FALSE | 1407819 | 1655596 |
6019673777983 | Lived in El Salvador (formerly Expats – El Salvador) | behaviors | Ex-pats , Lived in El Salvador (formerly Expats – El Salvador) | People who used to live in El Salvador who now live abroad | FALSE | 1473986 | 1733408 |
6019673808383 | Lived in Guatemala (formerly Ex-pats – Guatemala) | behaviors | Ex-pats , Lived in Guatemala (formerly Ex-pats – Guatemala) | People who used to live in Guatemala who now live abroad | FALSE | 2197619 | 2584400 |
6020530139383 | Travel and tourism Page admins | behaviors | Digital activities , Facebook page admins , Travel and tourism Page admins | People who are an admin of a travel and tourism Page on Facebook | FALSE | 19220526 | 22603339 |
6020530156983 | Sport Page admins | behaviors | Digital activities , Facebook page admins, Sport Page admins | People who are an admin of a sport Page on Facebook | FALSE | 7902853 | 9293756 |
6020530250383 | Retail Page admins | behaviors | Digital activities , Facebook page admins, Retail Page admins | People who are an admin of a retail Page on Facebook | FALSE | 11305724 | 13295532 |
6020568271383 | Health and beauty Page admins | behaviors | Digital activities , Facebook page admins , Health and beauty Page admins | People who are an admin of a health and beauty Page on Facebook | FALSE | 18209101 | 21413903 |
6020530269183 | Food and restaurant Page admins | behaviors | Digital activities , Facebook page admins , Food and restaurant Page admins | People who are an admin of a food and restaurant Page on Facebook | FALSE | 2089404 | 2457140 |
6020530280983 | Community and club Page admins | behaviors | Digital activities , Facebook page admins , Community and club Page admins | People who are an admin of a community and club Page on Facebook | FALSE | 15595613 | 18340442 |
6020530281783 | Business Page admins | behaviors | Digital activities , Facebook page admins, Business Page admins | People who are an admin of a business Page on Facebook | FALSE | 40704944 | 47869015 |
6021354152983 | Lived in the UK (formerly Ex-pats – UK) | behaviors | Ex-pats , Lived in the UK (formerly Ex-pats – UK) | People who used to live in the United Kingdom who now live abroad | FALSE | 4892666 | 5753776 |
6021354857783 | Lived in Australia (formerly Ex-pats – Australia) | behaviors | Ex-pats , Lived in Australia (formerly Ex-pats – Australia) | People who used to live in Australia who now live abroad | FALSE | 1339954 | 1575786 |
6021354882783 | Lived in Portugal (formerly Ex-pats – Portugal) | behaviors | Ex-pats , Lived in Portugal (formerly Ex-pats – Portugal) | People who used to live in Portugal who now live abroad | FALSE | 1003757 | 1180419 |
6022430911783 | Owns: Xperia Z3 | behaviors | Mobile Device User , All Mobile Devices by Brand, Sony , Owns: Xperia Z3 | People who are likely to own a Sony Xperia Z3 | FALSE | 14199 | 16699 |
6022788483583 | Frequent international travellers | behaviors | Travel , Frequent international travellers | People who have travelled abroad more than once in the past 6 months. | FALSE | 644113401 | 757477360 |
6023287351383 | Lived in Estonia (formerly Expats – Estonia) | behaviors | Ex-pats , Lived in Estonia (formerly Expats – Estonia) | People who used to live in Estonia who now live abroad | FALSE | 80339 | 94479 |
6023287459983 | Lived in Norway (formerly Ex-pats – Norway) | behaviors | Ex-pats , Lived in Norway (formerly Ex-pats – Norway) | People who used to live in Norway who now live abroad | FALSE | 180323 | 212061 |
6023287455983 | Lived in Denmark (formerly Ex-pats – Denmark) | behaviors | Ex-pats , Lived in Denmark (formerly Ex-pats – Denmark) | People who used to live in Denmark who now live abroad | FALSE | 124342 | 146227 |
6023287438783 | Lived in Czech Republic (formerly Ex-pats – Czech Republic) | behaviors | Ex-pats , Lived in Czech Republic (formerly Ex-pats – Czech Republic) | People who used to live in the Czech Republic who now live abroad | FALSE | 205344 | 241485 |
6023287397383 | Lived in Sweden (formerly Expats – Sweden) | behaviors | Ex-pats , Lived in Sweden (formerly Expats – Sweden) | People who used to live in Sweden who now live abroad | FALSE | 267919 | 315073 |
6023287393783 | Lived in the Netherlands (formerly Ex-pats – the Netherlands) | behaviors | Ex-pats , Lived in the Netherlands (formerly Ex-pats – the Netherlands) | People who used to live in the Netherlands who now live abroad | FALSE | 439177 | 516473 |
6023356562783 | Lived in Bangladesh (formerly Ex-pats – Bangladesh) | behaviors | Ex-pats , Lived in Bangladesh (formerly Ex-pats – Bangladesh) | People who used to live in Bangladesh who now live abroad | FALSE | 6100326 | 7173984 |
6023356926183 | Lived in Tanzania (formerly Expats – Tanzania) | behaviors | Ex-pats , Lived in Tanzania (formerly Expats – Tanzania) | People who used to live in Tanzania who now live abroad | FALSE | 464745 | 546541 |
6023356955383 | Lived in Nepal (formerly Ex-pats – Nepal) | behaviors | Ex-pats , Lived in Nepal (formerly Ex-pats – Nepal) | People who used to live in Nepal who now live abroad | FALSE | 3473994 | 4085417 |
6023356956983 | Lived in Jamaica (formerly Ex-pats – Jamaica) | behaviors | Ex-pats , Lived in Jamaica (formerly Ex-pats – Jamaica) | People who used to live in Jamaica who now live abroad | FALSE | 691965 | 813752 |
6023356966183 | Lived in Thailand (formerly Ex-pats – Thailand) | behaviors | Ex-pats , Lived in Thailand (formerly Ex-pats – Thailand) | People who used to live in Thailand who now live abroad | FALSE | 1711204 | 2012377 |
6023356986383 | Lived in Sierra Leone (formerly Expats – Sierra Leone) | behaviors | Ex-pats , Lived in Sierra Leone (formerly Expats – Sierra Leone) | People who used to live in Sierra Leone who now live abroad | FALSE | 212931 | 250407 |
6023357000583 | Lived in Senegal (formerly Ex-pats – Senegal) | behaviors | Ex-pats , Lived in Senegal (formerly Ex-pats – Senegal) | People who used to live in Senegal who now live abroad | FALSE | 456789 | 537184 |
6023422105983 | Lived in Côte d’Ivoire (formerly Ex-pats – Ivory Coast) | behaviors | Ex-pats , Lived in Côte d’Ivoire (formerly Ex-pats – Ivory Coast) | People who used to live in Côte d’Ivoire who now live abroad | FALSE | 571107 | 671622 |
6023460563383 | Owns: Alcatel | behaviors | Mobile Device User , All Mobile Devices by Brand, Owns: Alcatel | People who are likely to own an Alcatel mobile device | FALSE | 2882607 | 3389947 |
6023460572383 | Owns: ZTE | behaviors | Mobile Device User , All Mobile Devices by Brand, Owns: ZTE | People who are likely to own a ZTE mobile device | FALSE | 7928835 | 9324311 |
6023460579583 | Owns: Tecno | behaviors | Mobile Device User , All Mobile Devices by Brand, Owns: Tecno | People who are likely to own a Tecno mobile device. | FALSE | 74934710 | 88123220 |
6023460590583 | Owns: Cherry Mobile | behaviors | Mobile Device User , All Mobile Devices by Brand, Owns: Cherry Mobile | People who are likely to own a Cherry mobile device. | FALSE | 108499 | 127595 |
6023516315983 | Lived in Sri Lanka (formerly Ex-pats – Sri Lanka) | behaviors | Ex-pats , Lived in Sri Lanka (formerly Ex-pats – Sri Lanka) | People who used to live in Sri Lanka who now live abroad | FALSE | 1031784 | 1213379 |
6023516338783 | Lived in Morocco (formerly Ex-pats – Morocco) | behaviors | Ex-pats , Lived in Morocco (formerly Ex-pats – Morocco) | People who used to live in Morocco who now live abroad | FALSE | 1992982 | 2343748 |
6023516430783 | Lived in UAE (formerly Ex-pats – UAE) | behaviors | Ex-pats , Lived in UAE (formerly Ex-pats – UAE) | People who used to live in the United Arab Emirates who now live abroad | FALSE | 1550009 | 1822811 |
6023516368383 | Lived in New Zealand (formerly Ex-pats – New Zealand) | behaviors | Ex-pats , Lived in New Zealand (formerly Ex-pats – New Zealand) | People who used to live in New Zealand who now live abroad | FALSE | 1332069 | 1566514 |
6023516373983 | Lived in DR Congo (formerly Ex-pats – DR Congo) | behaviors | Ex-pats , Lived in DR Congo (formerly Ex-pats – DR Congo) | People who used to live in the Democratic Republic of the Congo who now live abroad | FALSE | 2174757 | 2557515 |
6023516403783 | Lived in Singapore (formerly Ex-pats – Singapore) | behaviors | Ex-pats , Lived in Singapore (formerly Ex-pats – Singapore) | People who used to live in Singapore who now live abroad | FALSE | 85151 | 100138 |
6023620475783 | Lived in the United States (formerly Ex-pats – United States) | behaviors | Ex-pats , Lived in the United States (formerly Ex-pats – United States) | People who used to live in the United States who now live abroad | FALSE | 16863766 | 19831789 |
6023675997383 | Lived in Austria (formerly Ex-pats – Austria) | behaviors | Ex-pats , Lived in Austria (formerly Ex-pats – Austria) | People who used to live in Austria who now live abroad | FALSE | 142829 | 167967 |
6023676002183 | Lived in Cyprus (formerly Ex-pats – Cyprus) | behaviors | Ex-pats , Lived in Cyprus (formerly Ex-pats – Cyprus) | People who used to live in Cyprus who now live abroad | FALSE | 86221 | 101397 |
6068209522983 | Lived in Finland (formerly Expats – Finland) | behaviors | Ex-pats , Lived in Finland (formerly Expats – Finland) | People who used to live in Finland who now live abroad | FALSE | 108393 | 127471 |
6023676017583 | Lived in Greece (formerly Ex-pats – Greece) | behaviors | Ex-pats , Lived in Greece (formerly Ex-pats – Greece) | People who used to live in Greece who now live abroad | FALSE | 5742 | 6753 |
6023676022783 | Lived in Hong Kong (formerly Ex-pats – Hong Kong) | behaviors | Ex-pats , Lived in Hong Kong (formerly Ex-pats – Hong Kong) | People who used to live in Hong Kong who now live abroad | FALSE | 725337 | 852997 |
6023676028783 | Lived in Japan (formerly Ex-pats – Japan) | behaviors | Ex-pats , Lived in Japan (formerly Ex-pats – Japan) | People who used to live in Japan who now live abroad | FALSE | 1572051 | 1848733 |
6068613839383 | Lived in Latvia (formerly Expats – Latvia) | behaviors | Ex-pats , Lived in Latvia (formerly Expats – Latvia) | People who used to live in Latvia who now live abroad | FALSE | 151292 | 177920 |
6023676039183 | Lived in Lithuania (formerly Ex-pats – Lithuania) | behaviors | Ex-pats , Lived in Lithuania (formerly Ex-pats – Lithuania) | People who used to live in Lithuania who now live abroad | FALSE | 240238 | 282521 |
6023676044383 | Lived in Luxembourg (formerly Ex-pats – Luxembourg) | behaviors | Ex-pats , Lived in Luxembourg (formerly Ex-pats – Luxembourg) | People who used to live in Luxembourg who now live abroad | FALSE | 31769 | 37361 |
6023676045583 | Lived in Malta (formerly Expats – Malta) | behaviors | Ex-pats , Lived in Malta (formerly Expats – Malta) | People who used to live in Malta who now live abroad | FALSE | 35680 | 41960 |
6023676048183 | Lived in Monaco (formerly Ex-pats – Monaco) | behaviors | Ex-pats , Lived in Monaco (formerly Ex-pats – Monaco) | People who used to live in Monaco who now live abroad | FALSE | 25096 | 29514 |
6023676055383 | Lived in Slovakia (formerly Ex-pats – Slovakia) | behaviors | Ex-pats , Lived in Slovakia (formerly Ex-pats – Slovakia) | People who used to live in Slovakia who now live abroad | FALSE | 243781 | 286687 |
6023676060183 | Lived in Slovenia (formerly Ex-pats – Slovenia) | behaviors | Ex-pats , Lived in Slovenia (formerly Ex-pats – Slovenia) | People who used to live in Slovenia who now live abroad | FALSE | 61229 | 72006 |
6023676072183 | Lived in Mexico (formerly Ex-pats – Mexico) | behaviors | Ex-pats , Lived in Mexico (formerly Ex-pats – Mexico) | People who used to live in Mexico who now live abroad | FALSE | 11883433 | 13974918 |
6025000826583 | Lived in Argentina (formerly Expats – Argentina) | behaviors | Ex-pats , Lived in Argentina (formerly Expats – Argentina) | People who used to live in Argentina who now live abroad | FALSE | 1268125 | 1491315 |
6025000823583 | Lived in Israel (formerly Ex-pats – Israel) | behaviors | Ex-pats , Lived in Israel (formerly Ex-pats – Israel) | People who used to live in Israel who now live abroad | FALSE | 544188 | 639966 |
6025000815983 | Lived in Russia (formerly Ex-pats – Russia) | behaviors | Ex-pats , Lived in Russia (formerly Ex-pats – Russia) | People who used to live in Russia who now live abroad | FALSE | 1282211 | 1507881 |
6025000813183 | Lived in Saudi Arabia (formerly Ex-pats – Saudi Arabia) | behaviors | Ex-pats , Lived in Saudi Arabia (formerly Ex-pats – Saudi Arabia) | People who used to live in the Kingdom of Saudi Arabia who now live abroad | FALSE | 1098263 | 1291558 |
6025054896983 | Lived in Chile (formerly Expats – Chile) | behaviors | Ex-pats , Lived in Chile (formerly Expats – Chile) | People who used to live in Chile who now live abroad | FALSE | 543035 | 638610 |
6025670492783 | Lived in Rwanda (formerly Ex-pats – Rwanda) | behaviors | Ex-pats , Lived in Rwanda (formerly Ex-pats – Rwanda) | People who used to live in Rwanda who now live abroad | FALSE | 134193 | 157812 |
6025753961783 | Family of those who live abroad | behaviors | Ex-pats , Family of those who live abroad | Family of people who now live abroad | FALSE | 32474338 | 38189822 |
6026404871583 | Lived in Venezuela (formerly Expats – Venezuela) | behaviors | Ex-pats , Lived in Venezuela (formerly Expats – Venezuela) | People who used to live in Venezuela who now live abroad | FALSE | 5117986 | 6018752 |
6026660740983 | Owns: Galaxy S6 | behaviors | Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy S6 | People who are likely to own a Samsung Galaxy S6 mobile device | FALSE | 772850 | 908872 |
6027147160983 | Lived in Malaysia (formerly Ex-pats – Malaysia) | behaviors | Ex-pats , Lived in Malaysia (formerly Ex-pats – Malaysia) | People who used to live in Malaysia who now live abroad | FALSE | 1825450 | 2146730 |
6027148962983 | Lived in Romania (formerly Ex-pats – Romania) | behaviors | Ex-pats , Lived in Romania (formerly Ex-pats – Romania) | People who used to live in Romania who now live abroad | FALSE | 1774365 | 2086654 |
6027148973583 | Lived in South Korea (formerly Ex-pats – South Korea) | behaviors | Ex-pats , Lived in South Korea (formerly Ex-pats – South Korea) | People who used to live in South Korea who now live abroad | FALSE | 3098005 | 3643254 |
6027149004983 | Lived in Serbia (formerly Expats – Serbia) | behaviors | Ex-pats , Lived in Serbia (formerly Expats – Serbia) | People who used to live in Serbia who now live abroad | FALSE | 575873 | 677227 |
6027149006383 | Lived in Vietnam (formerly Ex-pats – Vietnam) | behaviors | Ex-pats , Lived in Vietnam (formerly Ex-pats – Vietnam) | People who used to live in Vietnam who now live abroad | FALSE | 4994960 | 5874073 |
6027149008183 | Lived in Peru (formerly Ex-pats – Peru) | behaviors | Ex-pats , Lived in Peru (formerly Ex-pats – Peru) | People who used to live in Peru who now live abroad | FALSE | 1757621 | 2066963 |
6028974370383 | People in India who prefer high-value goods | behaviors | Consumer classification , India , People in India who prefer high-value goods | Aligned to (A) group, people in India who are predicted to prefer high-value goods | FALSE | 88053823 | 103551297 |
6028974351183 | People in India who prefer mid- and high-value goods | behaviors | Consumer classification , India , People in India who prefer mid- and high-value goods | Aligned to (A+B) group, people in India who are predicted to prefer mid to high-value goods | FALSE | 149350418 | 175636092 |
6029587661983 | Facebook access (OS): Windows 10 | behaviors | Digital activities , Operating system used , Facebook access (OS): Windows 10 | People who primarily access Facebook using Windows 10 | FALSE | 60842 | 71551 |
6031259562783 | Owns: iPhone 6S | behaviors | Mobile Device User , All Mobile Devices by Brand, Apple , Owns: iPhone 6S | People who are likely to own an iPhone 6S mobile device | FALSE | 3890994 | 4575809 |
6031259590183 | Owns: iPhone 6S Plus | behaviors | Mobile Device User , All Mobile Devices by Brand, Apple , Owns: iPhone 6S Plus | People who are likely to own an iPhone 6S Plus mobile device. | FALSE | 3268878 | 3844201 |
6041891177783 | New Page admins | behaviors | Digital activities , Facebook page admins, New Page admins | People who have become Facebook Page admins within the past two weeks. | FALSE | 316406417 | 372093947 |
6042330550783 | Owns: Galaxy Note 5 | behaviors | Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy Note 5 | People who are likely to own a Samsung Galaxy Note 5 mobile device | FALSE | 33830 | 39785 |
6043341245183 | Owns: LG V10 | behaviors | Mobile Device User , All Mobile Devices by Brand, LG , Owns: LG V10 | People who are likely to own an LG V10 mobile device | FALSE | 11840 | 13925 |
6043702804583 | Lived in Belgium (formerly Expats – Belgium) | behaviors | Ex-pats , Lived in Belgium (formerly Expats – Belgium) | People who used to live in Belgium who now live abroad | FALSE | 346538 | 407529 |
6043523344783 | Owns: Galaxy S7 | behaviors | Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy S7 | People who are likely to own a Samsung Galaxy S7 mobile device | FALSE | 1146183 | 1347912 |
6043522870783 | Owns: Galaxy S7 Edge | behaviors | Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy S7 Edge | People who are likely to own a Samsung Galaxy S7 Edge mobile device | FALSE | 1272721 | 1496720 |
6046095968983 | People in South Africa who prefer high-value goods | behaviors | Consumer classification , South Africa , People in South Africa who prefer high-value goods | Aligned to (8,9,10) LSM group, people in South Africa who are predicted to prefer high-value goods | FALSE | 2429703 | 2857331 |
6046096047583 | People in South Africa who prefer mid- and high-value goods | behaviors | Consumer classification , South Africa , People in South Africa who prefer mid- and high-value goods | Aligned to (5,6,7) LSM group, people in South Africa who are predicted to prefer mid- to high-value goods | FALSE | 3901518 | 4588186 |
6046096201583 | People in Brazil who prefer high-value goods | behaviors | Consumer classification , Brazil , People in Brazil who prefer high-value goods | Aligned to (A+B) group, people in Brazil who are predicted to prefer high-value goods | FALSE | 11757965 | 13827368 |
6054947014783 | Owns: iPhone SE | behaviors | Mobile Device User , All Mobile Devices by Brand, Apple , Owns: iPhone SE | People who likely own an iPhone SE mobile device | FALSE | 9845809 | 11578672 |
6047219032183 | Lived in Zambia (formerly Ex-pats – Zambia) | behaviors | Ex-pats , Lived in Zambia (formerly Ex-pats – Zambia) | People who used to live in Zambia who now live abroad | FALSE | 242234 | 284868 |
6055133998183 | Facebook access (browser): Microsoft Edge | behaviors | Digital activities , Internet browser used , Facebook access (browser): Microsoft Edge | People who primarily access Facebook using Microsoft Edge | FALSE | 21048470 | 24753001 |
6056265200983 | Owns: Oppo | behaviors | Mobile Device User , All Mobile Devices by Brand, Owns: Oppo | People who are likely to own an Oppo mobile device | FALSE | 174938451 | 205727619 |
6056265212183 | Owns: VIVO devices | behaviors | Mobile Device User , All Mobile Devices by Brand, Owns: VIVO devices | People who are likely to own VIVO mobile devices | FALSE | 165136462 | 194200480 |
6058034528983 | Owns: Galaxy Note 7 | behaviors | Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy Note 7 | People who are likely to own a Samsung Galaxy Note 7 mobile device | FALSE | 204 | 240 |
6059793664583 | Lived in Honduras (formerly Ex-pats – Honduras) | behaviors | Ex-pats , Lived in Honduras (formerly Ex-pats – Honduras) | People who used to live in Honduras who now live abroad | FALSE | 1576508 | 1853974 |
6060616578383 | Owns: iPhone 7 | behaviors | Mobile Device User , All Mobile Devices by Brand, Apple , Owns: iPhone 7 | People who are likely to own an iPhone 7 mobile device | FALSE | 6741051 | 7927477 |
6060616598183 | Owns: iPhone 7 Plus | behaviors | Mobile Device User , All Mobile Devices by Brand, Apple , Owns: iPhone 7 Plus | People who are likely to own an iPhone 7 Plus mobile device. | FALSE | 8629959 | 10148832 |
6061668174383 | Owns: Google Pixel | behaviors | Mobile Device User , All Mobile Devices by Brand, Google , Owns: Google Pixel | People who are likely to own a Google Pixel mobile device | FALSE | 33458 | 39347 |
6063136545383 | Android: 360 degree media supported | behaviors | Mobile Device User , Android: 360 degree media supported | People whose primary mobile device is Android with support for 360-degree media (photos, videos). | FALSE | 1209176853 | 1421991980 |
6063268655983 | Facebook access (OS): Mac Sierra | behaviors | Digital activities , Operating system used , Facebook access (OS): Mac Sierra | People who primarily access Facebook using Mac Sierra | FALSE | 1817304 | 2137150 |
6065048233383 | Android: 360 degree media not supported | behaviors | Mobile Device User , Android: 360 degree media not supported | People whose primary mobile device is Android without support for 360 degree media (photos, videos). | FALSE | 2092136 | 2460353 |
6068844014183 | Lived in Lebanon (formerly Ex-pats – Lebanon) | behaviors | Ex-pats , Lived in Lebanon (formerly Ex-pats – Lebanon) | People who used to live in Lebanon who now live abroad | FALSE | 762430 | 896618 |
6068843912183 | Lived in Jordan (formerly Ex-pats – Jordan) | behaviors | Ex-pats , Lived in Jordan (formerly Ex-pats – Jordan) | People who used to live in Jordan who now live abroad | FALSE | 763925 | 898376 |
6071631541183 | Engaged shoppers | behaviors | Purchase behaviour, Engaged shoppers | People who have clicked on the call-to-action button “Shop Now” in the past week. | FALSE | 672890008 | 791318650 |
6071248932383 | Lived in Algeria (formerly Ex-pats – Algeria) | behaviors | Ex-pats , Lived in Algeria (formerly Ex-pats – Algeria) | People who used to live in Algeria who now live abroad | FALSE | 1052940 | 1238258 |
6071248894383 | Lived in Nicaragua (formerly Ex-pats – Nicaragua) | behaviors | Ex-pats , Lived in Nicaragua (formerly Ex-pats – Nicaragua) | People who used to live in Nicaragua who now live abroad | FALSE | 902438 | 1061268 |
6071248981583 | Lived in Kuwait (formerly Ex-pats – Kuwait) | behaviors | Ex-pats , Lived in Kuwait (formerly Ex-pats – Kuwait) | People who used to live in Kuwait who now live abroad | FALSE | 148403 | 174523 |
6071249058983 | Lived in Qatar (formerly Ex-pats – Qatar) | behaviors | Ex-pats , Lived in Qatar (formerly Ex-pats – Qatar) | People who used to live in Qatar who now live abroad | FALSE | 115073 | 135327 |
6071590219583 | Owns: Gionee | behaviors | Mobile Device User , All Mobile Devices by Brand, Owns: Gionee | People who likely own a Gionee mobile device | FALSE | 845441 | 994239 |
6075237200983 | Owns: Galaxy S8 | behaviors | Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy S8 | People who likely own a Galaxy S8 mobile device | FALSE | 2512420 | 2954606 |
6075237226583 | Owns: Galaxy S8+ | behaviors | Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy S8+ | People who are likely to own a Galaxy S8+ mobile device | FALSE | 1642275 | 1931316 |
6080562616983 | Football fans (high content engagement) | behaviors | Soccer , Football fans (high content engagement) | Interacted with content related to football five or more times over the past 90 days. | FALSE | 9588252 | 11275785 |
6080562614783 | Football fans (moderate content engagement) | behaviors | Soccer , Football fans (moderate content engagement) | Interacted with content related to football and sports fewer than five times over the past 90 days. | FALSE | 94525839 | 111162387 |
6082317210583 | People who prefer high-value goods in UAE | behaviors | Consumer classification , UAE , People who prefer high-value goods in UAE | Aligned to (A) group, people in UAE who are predicted to prefer high-value goods | FALSE | 68737 | 80835 |
6082317378383 | People who prefer mid and high-value goods in UAE | behaviors | Consumer classification , UAE , People who prefer mid and high-value goods in UAE | Aligned to (A+B) group, people in UAE who are predicted to prefer mid-to-high-value goods | FALSE | 344455 | 405080 |
6082317392983 | People who prefer high-value goods in the Kingdom of Saudi Arabia | behaviors | Consumer classification , Kingdom of Saudi Arabia , People who prefer high-value goods in the Kingdom of Saudi Arabia | Aligned to (A) group, people in the Kingdom of Saudi Arabia who are predicted to prefer high-value goods | FALSE | 1066201 | 1253853 |
6082317405583 | People who prefer mid to high-value goods in the Kingdom of Saudi Arabia | behaviors | Consumer classification , Kingdom of Saudi Arabia , People who prefer mid to high-value goods in the Kingdom of Saudi Arabia | Aligned to (A+B) group, people in the Kingdom of Saudi Arabia who are predicted to prefer mid to high-value goods | FALSE | 2468528 | 2902990 |
6083036245383 | Owns: Galaxy Note 8 | behaviors | Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy Note 8 | People who are likely to own a Samsung Galaxy Note 8 mobile device | FALSE | 34844 | 40977 |
6085888747383 | People in Mexico who prefer high-value goods | behaviors | Consumer classification , Mexico , People in Mexico who prefer high-value goods | Aligned to (AB) group, people in Mexico who are predicted to prefer high-value goods | FALSE | 4811683 | 5658540 |
6085888777383 | People in Mexico who prefer mid- and high-value goods | behaviors | Consumer classification , Mexico , People in Mexico who prefer mid- and high-value goods | Aligned to (ABC+) group, people in Mexico who are predicted to prefer mid to high-value goods | FALSE | 15900290 | 18698742 |
6086568164383 | Marketing API developers (last 90 days) | behaviors | More categories , Marketing API developers (last 90 days) | App developers that have used the Facebook marketing API in the last 90 days. | FALSE | 49821 | 58590 |
6086326043983 | People in Chile who prefer high-value goods | behaviors | Consumer classification , Chile , People in Chile who prefer high-value goods | Aligned to (ABC1) group, people in Chile who are predicted to prefer high-value goods | FALSE | 754648 | 887467 |
6086326068183 | People in Chile who prefer mid- and high-value goods | behaviors | Consumer classification , Chile , People in Chile who prefer mid- and high-value goods | Aligned to (A+B) group, people in Chile who are predicted to prefer mid to high-value goods | FALSE | 2275689 | 2676211 |
6086326072983 | People in Argentina who prefer high-value goods | behaviors | Consumer classification , Argentina , People in Argentina who prefer high-value goods | Aligned to (ABC1) group, people in Argentina who are predicted to prefer high-value goods | FALSE | 939669 | 1105051 |
6086326078383 | People in Argentina who prefer mid- and high-value goods | behaviors | Consumer classification , Argentina , People in Argentina who prefer mid- and high-value goods | Aligned to (ABC1+C2) group, people in Argentina who are predicted to prefer mid to high-value goods | FALSE | 3562984 | 4190070 |
6089632523783 | People in Turkey who prefer high-value goods | behaviors | Consumer classification , Turkey , People in Turkey who prefer high-value goods | Aligned to (A) SES group, people in Turkey who are predicted to prefer high-value goods | FALSE | 1700222 | 1999462 |
6089632452783 | People in Turkey who prefer mid- and high-value goods | behaviors | Consumer classification , Turkey , People in Turkey who prefer mid- and high-value goods | Aligned to (A+B) SES group, people in Turkey who are predicted to prefer mid- to high-value goods | FALSE | 6958070 | 8182691 |
6091658707783 | Uses a mobile device (less than 1 month) | behaviors | Mobile device user/device use time , Uses a mobile device (less than 1 month) | People who are likely to have used a mobile device for less than 1 month | FALSE | 66962647 | 78748073 |
6091658708183 | Uses a mobile device (1-3 months) | behaviors | Mobile device user/device use time, Uses a mobile device (1-3 months) | People who are likely to have used a mobile device for 1-3 months | FALSE | 165829719 | 195015750 |
6091658512983 | Uses a mobile device (4-6 months) | behaviors | Mobile device user/device use time, Uses a mobile device (4-6 months) | People who are likely to have used a mobile device for 4-6 months | FALSE | 190109345 | 223568590 |
6091658512183 | Uses a mobile device (7-9 months) | behaviors | Mobile device user/device use time, Uses a mobile device (7-9 months) | People who are likely to have used a mobile device for 7-9 months | FALSE | 153962136 | 181059473 |
6091658540583 | Uses a mobile device (10-12 months) | behaviors | Mobile device user/device use time , Uses a mobile device (10-12 months) | People who are likely to have used a mobile device for 10-12 months | FALSE | 129175255 | 151910100 |
6091658562383 | Uses a mobile device (13-18 months) | behaviors | Mobile device user/device use time , Uses a mobile device (13-18 months) | People who are likely to have used a mobile device for 13-18 months | FALSE | 207472253 | 243987370 |
6091658651583 | Uses a mobile device (19-24 months) | behaviors | Mobile device user/device use time , Uses a mobile device (19-24 months) | People who are likely to have used a mobile device for 19-24 months | FALSE | 176642492 | 207731571 |
6091658683183 | Uses a mobile device (25 months+) | behaviors | Mobile device user/device use time, Uses a mobile device (25 months+) | People who are likely to have used a mobile device for 25+ months | FALSE | 600936921 | 706701820 |
6092145447383 | People in Indonesia who prefer high-value goods | behaviors | Consumer classification , Indonesia , People in Indonesia who prefer high-value goods | Aligned to (Upper I) group, people in Indonesia who are predicted to prefer high-value goods | FALSE | 16424498 | 19315210 |
6092512412783 | Facebook access (mobile): iPhone 8 | behaviors | Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPhone 8 | People who are likely to own an iPhone 8 mobile device. | FALSE | 5550073 | 6526886 |
6092512424583 | Facebook access (mobile): iPhone 8 Plus | behaviors | Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPhone 8 Plus | People who are likely to own an iPhone 8 Plus mobile device | FALSE | 8215284 | 9661174 |
6092512462983 | Facebook access (mobile): iPhone X | behaviors | Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPhone X | People who are likely to own an iPhone X mobile device | FALSE | 7432419 | 8740525 |
6100052630783 | Interested in upcoming events | behaviors | More categories , Interested in upcoming events | People who have expressed interest in attending an upcoming Facebook event. | FALSE | 6303151 | 7412506 |
6100406737783 | People in Pakistan who prefer high-value goods | behaviors | Consumer classification , Pakistan , People in Pakistan who prefer high-value goods | Aligned to (A) SEC group, people in Pakistan who are predicted to prefer high-value goods | FALSE | 1538664 | 1809470 |
6100407062383 | People in Pakistan who prefer mid- and high-value goods | behaviors | Consumer classification , Pakistan , People in Pakistan who prefer mid- and high-value goods | Aligned to (A+B) SEC group, people in Pakistan who are predicted to prefer mid- to high-value goods | FALSE | 7630532 | 8973506 |
6100407234583 | People in Malaysia who prefer mid- and high-value goods | behaviors | Consumer classification , Malaysia , People in Malaysia who prefer mid- and high-value goods | Aligned to (AB+C1) SEC group, people in Malaysia who are predicted to prefer mid- to high-value goods | FALSE | 6198394 | 7289312 |
6100407132383 | People in Malaysia who prefer high-value goods | behaviors | Consumer classification , Malaysia , People in Malaysia who prefer high-value goods | Aligned to (AB) SEC group, people in Malaysia who are predicted to prefer high-value goods | FALSE | 2354369 | 2768739 |
6106223987983 | Owns: Galaxy S9 | behaviors | Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy S9 | People who are likely to own a Galaxy S9 mobile device | FALSE | 3105319 | 3651856 |
6106224431383 | Owns: Galaxy S9+ | behaviors | Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy S9+ | People who are likely to own a Galaxy S9+ mobile device | FALSE | 3002565 | 3531017 |
6106805412383 | Owns: OnePlus | behaviors | Mobile Device User, Owns: OnePlus | People who are likely to own a OnePlus mobile device | FALSE | 17961699 | 21122959 |
6110446593183 | People in Indonesia who prefer mid-value and high-value goods | behaviors | Consumer classification , Indonesia , People in Indonesia who prefer mid-value and high-value goods | Aligned to (upper I, upper II and middle I) group, people in Indonesia who are predicted to prefer high-value goods | FALSE | 41063262 | 48290397 |
6110813675983 | People in Brazil who prefer mid-value and high-value goods | behaviors | Consumer classification , Brazil , People in Brazil who prefer mid-value and high-value goods | Aligned to (A+B+C) group, people in Brazil who are predicted to prefer mid-value and high-value goods | FALSE | 28592723 | 33625043 |
6110633547383 | People who prefer high-value goods in the Philippines | behaviors | Consumer classification , Philippines , People who prefer high-value goods in the Philippines | Aligned to (A) group, people in the Philippines who are predicted to prefer high-value goods | FALSE | 6207039 | 7299479 |
6110636171983 | People who prefer mid-value and high-value goods in the Philippines | behaviors | Consumer classification , Philippines , People who prefer mid-value and high-value goods in the Philippines | Aligned to (A+B) group, people in the Philippines who are predicted to prefer mid to high-value goods | FALSE | 27786753 | 32677222 |
6120699687383 | Facebook access (mobile): iPhone XS | behaviors | Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPhone XS | People who are likely to own an iPhone XS mobile device | FALSE | 4334244 | 5097072 |
6120699721983 | Facebook access (mobile): iPhone XS Max | behaviors | Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPhone XS Max | People who are likely to own an iPhone XS Max mobile device | FALSE | 6848094 | 8053359 |
6120699725783 | Facebook access (mobile): iPhone XR | behaviors | Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPhone XR | People who are likely to own an iPhone XR mobile device | FALSE | 14376830 | 16907153 |
6202657388783 | People who have visited Facebook Gaming | behaviors | Digital activities , People who have visited Facebook Gaming | People who have recently accessed Facebook Gaming to watch videos, view posts, access tournaments or play games. | FALSE | 13639459 | 16040004 |
6203619619383 | Friends of football fans | behaviors | Soccer , Friends of football fans | Friends of anyone who is a moderately or highly engaged football fan. Excludes people who are already football fans. | FALSE | 1541808271 | 1813166527 |
6203619967383 | Friends of those who live abroad | behaviors | Ex-pats , Friends of those who live abroad | Friends of people who now live abroad | FALSE | 1688480494 | 1985653061 |
6297846662583 | Instagram business profile admins | behaviors | Digital activities , Instagram business profile admins | People who are an administrator of an Instagram business profile | FALSE | 51334463 | 60369329 |
6273196847983 | New active business (< 12 months) | behaviors | Digital activities , New active business (< 12 months) | Admins of engaged businesses that were created in the last 12 months. | FALSE | 15557027 | 18295064 |
6273108079183 | New active business (< 6 months) | behaviors | Digital activities , New active business (< 6 months) | Admins of engaged businesses that were created in the last 6 months. | FALSE | 8845636 | 10402469 |
6273108107383 | New active business (< 24 months) | behaviors | Digital activities , New active business (< 24 months) | Admins of engaged businesses that were created in the last 24 months. | FALSE | 25967508 | 30537790 |
6320095608983 | Recently detected devices | behaviors | Behaviours , Mobile Device User , All Mobile Devices by Operating System, Facebook access (mobile) , Recently detected devices | Users who have recently connected to Facebook on a new smartphone device | FALSE | 582764518 | 685331074 |
6320095650783 | Recently detected iPhone 14 devices | behaviors | Behaviours , Mobile Device User , All Mobile Devices by Operating System, Facebook access (mobile) , Recently detected iPhone 14 devices | Users who have recently connected to Facebook on an iPhone 14 device | FALSE | 14018518 | 16485778 |
6378518542983 | All creators | behaviors | Digital activities, All creators | People who are creators on Facebook and Instagram. | FALSE | 19897946 | 23399985 |
6378552460983 | Internet personality creators | behaviors | Digital activities , Internet personality creators | People who are Internet personality creators on Facebook and Instagram. | FALSE | 5923459 | 6965988 |
6378532690183 | Music creators | behaviors | Digital activitiesTeam, Music creators | People who are music creators on Facebook and Instagram. | FALSE | 2081538 | 2447889 |
6377407066783 | Food and drink creators | behaviors | Digital activities , Food and drink creators | People who are food and drink creators on Facebook and Instagram. | FALSE | 1050746 | 1235678 |
6377406843183 | Travel and outdoors creators | behaviors | Digital activities , Travel and outdoors creators | People who are travel and outdoors creators on Facebook and Instagram. | FALSE | 821755 | 966385 |
6377407134383 | Health and wellness creators | behaviors | Digital activities , Health and wellness creators | People who are health and wellness creators on Facebook and Instagram. | FALSE | 324114 | 381159 |
6377178995383 | Shops admins | behaviors | Digital activities, Shops admins | People who manage a shop on Facebook or Instagram. | FALSE | 671257 | 789399 |
6356471865383 | Facebook Lite app users | behaviors | Digital activities , Facebook Lite app users | People who use the Facebook Lite app. | FALSE | 292864591 | 344408760 |
interests_df <- get_fb_parameter_ids(type = "interests",
version = VERSION,
token = TOKEN)
interests_df %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%",
height = "300px")
id | name | type | path | lifecycle | audience_size_lower_bound | audience_size_upper_bound |
---|---|---|---|---|---|---|
6002839660079 | Cosmetics (personal care) | interests | Shopping and fashion , Beauty (social concept) , Cosmetics (personal care) | 2 | 954268571 | 1122219840 |
6002866718622 | Science (science) | interests | Business and industry, Science (science) | 2 | 600334489 | 705993360 |
6002867432822 | Beauty (social concept) | interests | Shopping and fashion , Beauty (social concept) | 2 | 1271912474 | 1495769070 |
6002868021822 | Adventure travel (travel & tourism) | interests | Hobbies and activities , Travel (travel & tourism) , Adventure travel (travel & tourism) | 2 | 275203844 | 323639721 |
6002868910910 | Organic food (food & drink) | interests | Food and drink (consumables), Food (food & drink) , Organic food (food & drink) | 2 | 273132221 | 321203492 |
6002884511422 | Small business (business & finance) | interests | Business and industry , Small business (business & finance) | 2 | 177101195 | 208271006 |
6002920953955 | Interior design (design) | interests | Business and industry , Design (design) , Interior design (design) | 2 | 488461241 | 574430420 |
6002925538921 | Acting (performing arts) | interests | Hobbies and activities , Arts and music (art) , Acting (performing arts) | 2 | 195934863 | 230419400 |
6002926108721 | Vacations (social concept) | interests | Hobbies and activities , Travel (travel & tourism) , Vacations (social concept) | 2 | 312986868 | 368072557 |
6002929380259 | Volleyball (sport) | interests | Sports and outdoors, Sports (sports) , Volleyball (sport) | 2 | 342179787 | 402403430 |
6002936693259 | Soft drinks (nonalcoholic beverage) | interests | Food and drink (consumables) , Beverages (food & drink) , Soft drinks (nonalcoholic beverage) | 2 | 187387091 | 220367220 |
6002951587955 | Classical music (music) | interests | Entertainment (leisure) , Music (entertainment & media), Classical music (music) | 2 | 324272448 | 381344400 |
6002957026250 | Theatre (performing arts) | interests | Entertainment (leisure) , Live events (entertainment), Theatre (performing arts) | 2 | 512677397 | 602908620 |
6002960574320 | Tablet computers (computers & electronics) | interests | Technology (computers & electronics) , Computers (computers & electronics) , Tablet computers (computers & electronics) | 2 | 512619285 | 602840280 |
6002963523717 | Aviation (air travel) | interests | Business and industry, Aviation (air travel) | 2 | 164384736 | 193316450 |
6002964239317 | Mexican cuisine (food & drink) | interests | Food and drink (consumables) , Cuisine (food & drink) , Mexican cuisine (food & drink) | 8 | 102614047 | 120674120 |
6002964500317 | Word games (games) | interests | Entertainment (leisure), Games (leisure) , Word games (games) | 2 | 62499974 | 73499970 |
6002970406974 | Concerts (music event) | interests | Entertainment (leisure) , Live events (entertainment), Concerts (music event) | 2 | 259957134 | 305709590 |
6002971085794 | Mobile phones (smart phone) | interests | Technology (computers & electronics) , Consumer electronics (computers & electronics), Mobile phones (smart phone) | 2 | 1007046692 | 1184286910 |
6002971095994 | Action games (video games) | interests | Entertainment (leisure) , Games (leisure) , Action games (video games) | 2 | 152967687 | 179890000 |
6002979499920 | Fishing (outdoors activities) | interests | Sports and outdoors , Outdoor recreation (outdoors activities), Fishing (outdoors activities) | 2 | 278638503 | 327678880 |
6002984573619 | Surfing (water sport) | interests | Sports and outdoors , Outdoor recreation (outdoors activities), Surfing (water sport) | 2 | 126273336 | 148497444 |
6002985584323 | Outdoor recreation (outdoors activities) | interests | Sports and outdoors , Outdoor recreation (outdoors activities) | 2 | 581478290 | 683818470 |
6002986104968 | Mystery fiction (entertainment & media) | interests | Entertainment (leisure) , Reading (communication) , Mystery fiction (entertainment & media) | 2 | 147119005 | 173011950 |
6002991239659 | Motherhood (children & parenting) | interests | Family and relationships , Motherhood (children & parenting) | 2 | 698407040 | 821326680 |
6002991736368 | Reading (communication) | interests | Entertainment (leisure), Reading (communication) | 2 | 1279238928 | 1504384980 |
6002997799844 | Singing (music) | interests | Hobbies and activities, Arts and music (art) , Singing (music) | 2 | 425761938 | 500696040 |
6002998123892 | Japanese cuisine (food & drink) | interests | Food and drink (consumables) , Cuisine (food & drink) , Japanese cuisine (food & drink) | 8 | 135928681 | 159852130 |
6002998517244 | Camcorders (consumer electronics) | interests | Technology (computers & electronics) , Consumer electronics (computers & electronics), Camcorders (consumer electronics) | 2 | 18698377 | 21989292 |
6003012317397 | Gambling (gambling) | interests | Entertainment (leisure), Games (leisure) , Gambling (gambling) | 2 | 331443443 | 389777490 |
6003012461997 | Beer (alcoholic drinks) | interests | Food and drink (consumables) , Alcoholic beverages (food & drink), Beer (alcoholic drinks) | 2 | 333167653 | 391805160 |
6003020834693 | Music (entertainment & media) | interests | Entertainment (leisure) , Music (entertainment & media) | 2 | 1519764804 | 1787243410 |
6003025268985 | Tattoos (body art) | interests | Shopping and fashion , Beauty (social concept), Tattoos (body art) | 2 | 495843528 | 583111990 |
6003029869785 | Arts and music (art) | interests | Hobbies and activities, Arts and music (art) | 2 | 1390925697 | 1635728620 |
6003030029655 | Chinese cuisine (food & drink) | interests | Food and drink (consumables) , Cuisine (food & drink) , Chinese cuisine (food & drink) | 8 | 152438027 | 179267120 |
6003030519207 | Online poker (gambling) | interests | Entertainment (leisure), Games (leisure) , Online poker (gambling) | 2 | 151133044 | 177732460 |
6003049202156 | Community issues (law & government) | interests | Hobbies and activities , Politics and social issues (politics), Community issues (law & government) | 2 | 236059226 | 277605650 |
6003053056644 | Gardening (outdoor activities) | interests | Hobbies and activities , Home and garden , Gardening (outdoor activities) | 2 | 356451726 | 419187230 |
6003054884732 | Coupons (coupons & discounts) | interests | Shopping and fashion , Shopping (retail) , Coupons (coupons & discounts) | 2 | 577801581 | 679494660 |
6003059385128 | Ecotourism (travel & tourism) | interests | Hobbies and activities , Travel (travel & tourism) , Ecotourism (travel & tourism) | 2 | 124376713 | 146267015 |
6003059733932 | First-person shooter games (video games) | interests | Entertainment (leisure) , Games (leisure) , First-person shooter games (video games) | 2 | 558766989 | 657109980 |
6003062205328 | Retail banking (banking) | interests | Business and industry , Banking (finance) , Retail banking (banking) | 2 | 23764328 | 27946850 |
6003063638807 | Investment banking (banking) | interests | Business and industry , Banking (finance) , Investment banking (banking) | 2 | 32717426 | 38475693 |
6003064649070 | Mountains (places) | interests | Hobbies and activities , Travel (travel & tourism), Mountains (places) | 2 | 309836930 | 364368230 |
6003070122382 | Toys (toys) | interests | Shopping and fashion, Toys (toys) | 2 | 480501513 | 565069780 |
6003070856229 | Games (leisure) | interests | Entertainment (leisure), Games (leisure) | 2 | 1242865136 | 1461609400 |
6003074487739 | E-books (publications) | interests | Entertainment (leisure), Reading (communication), E-books (publications) | 2 | 366680399 | 431216150 |
6003074954515 | Sales (business & finance) | interests | Business and industry , Sales (business & finance) | 2 | 892383903 | 1049443470 |
6003076016339 | Email marketing (marketing) | interests | Business and industry , Online (computing) , Email marketing (marketing) | 2 | 14417554 | 16955044 |
6003083357650 | Manga (anime & manga) | interests | Entertainment (leisure), Reading (communication), Manga (anime & manga) | 2 | 226028885 | 265809969 |
6003087413192 | Baseball (sport) | interests | Sports and outdoors, Sports (sports) , Baseball (sport) | 2 | 450915484 | 530276610 |
6003088846792 | Beauty salons (cosmetics) | interests | Shopping and fashion , Beauty (social concept) , Beauty salons (cosmetics) | 2 | 618195365 | 726997750 |
6003090714101 | Car rentals (transportation) | interests | Hobbies and activities , Travel (travel & tourism) , Car rentals (transportation) | 2 | 153514217 | 180532720 |
6003092330156 | Mountain biking (cycling) | interests | Sports and outdoors , Outdoor recreation (outdoors activities), Mountain biking (cycling) | 2 | 94696265 | 111362808 |
6003092882217 | Trucks (vehicles) | interests | Hobbies and activities , Vehicles (transportation), Trucks (vehicles) | 2 | 272359982 | 320295340 |
6003096002658 | Graphic design (visual art) | interests | Business and industry , Design (design) , Graphic design (visual art) | 2 | 315060008 | 370510570 |
6003101323797 | Fatherhood (children & parenting) | interests | Family and relationships , Fatherhood (children & parenting) | 8 | 352672278 | 414742600 |
6003102729234 | Italian cuisine (food & drink) | interests | Food and drink (consumables) , Cuisine (food & drink) , Italian cuisine (food & drink) | 8 | 146667498 | 172480978 |
6003102988840 | Latin American cuisine (food & drink) | interests | Food and drink (consumables) , Cuisine (food & drink) , Latin American cuisine (food & drink) | 8 | 41796581 | 49152780 |
6003103108917 | Boutiques (retailers) | interests | Shopping and fashion , Shopping (retail) , Boutiques (retailers) | 2 | 532794960 | 626566874 |
6003105618835 | Crafts (hobbies) | interests | Hobbies and activities, Arts and music (art) , Crafts (hobbies) | 2 | 423784727 | 498370840 |
6003106813190 | Hunting (sport) | interests | Sports and outdoors , Outdoor recreation (outdoors activities), Hunting (sport) | 2 | 201917244 | 237454680 |
6003107699532 | Soul music (music) | interests | Entertainment (leisure) , Music (entertainment & media), Soul music (music) | 2 | 461193307 | 542363330 |
6003107902433 | Association football (Soccer) | interests | Sports and outdoors , Sports (sports) , Association football (Soccer) | 2 | 1239072202 | 1457148910 |
6003108411433 | Rabbits (animals) | interests | Hobbies and activities, Pets (animals) , Rabbits (animals) | 2 | 114737916 | 134931790 |
6003108649035 | Spanish cuisine (food & drink) | interests | Food and drink (consumables) , Cuisine (food & drink) , Spanish cuisine (food & drink) | 8 | 35717153 | 42003372 |
6003108826384 | Music festivals (events) | interests | Entertainment (leisure) , Live events (entertainment), Music festivals (events) | 2 | 293265824 | 344880610 |
6003115804542 | Desktop computers (consumer electronics) | interests | Technology (computers & electronics) , Computers (computers & electronics) , Desktop computers (consumer electronics) | 2 | 155917219 | 183358650 |
6003116038942 | Computer monitors (computer hardware) | interests | Technology (computers & electronics) , Computers (computers & electronics) , Computer monitors (computer hardware) | 2 | 145069931 | 170602240 |
6003120620858 | Coffeehouses (coffee) | interests | Food and drink (consumables), Restaurants (dining) , Coffeehouses (coffee) | 2 | 411936607 | 484437450 |
6003122958658 | Boating (outdoors activities) | interests | Sports and outdoors , Outdoor recreation (outdoors activities), Boating (outdoors activities) | 2 | 76591163 | 90071208 |
6003125064949 | Electric vehicle (vehicle) | interests | Hobbies and activities , Vehicles (transportation) , Electric vehicle (vehicle) | 2 | 98080261 | 115342387 |
6003125948045 | Desserts (food & drink) | interests | Food and drink (consumables), Food (food & drink) , Desserts (food & drink) | 2 | 398663415 | 468828177 |
6003126215349 | Comics (comics & cartoons) | interests | Entertainment (leisure) , Reading (communication) , Comics (comics & cartoons) | 2 | 284793789 | 334917497 |
6003126358188 | TV game shows (television show) | interests | Entertainment (leisure) , TV (movies & television) , TV game shows (television show) | 2 | 110719600 | 130206250 |
6003127206524 | Digital marketing (marketing) | interests | Business and industry , Online (computing) , Digital marketing (marketing) | 2 | 149444939 | 175747249 |
6003129926917 | Animated movies (movies) | interests | Entertainment (leisure) , Movies (entertainment & media), Animated movies (movies) | 2 | 418699651 | 492390790 |
6003132926214 | Furniture (home furnishings) | interests | Hobbies and activities , Home and garden , Furniture (home furnishings) | 2 | 522148358 | 614046470 |
6003133486214 | Vehicles (transportation) | interests | Hobbies and activities , Vehicles (transportation) | 2 | 847249855 | 996365830 |
6003133978408 | Chocolate (food & drink) | interests | Food and drink (consumables), Food (food & drink) , Chocolate (food & drink) | 2 | 475445765 | 559124220 |
6003134986700 | Baking (cooking) | interests | Food and drink (consumables), Cooking (food & drink) , Baking (cooking) | 2 | 356463045 | 419200542 |
6003137105590 | Volunteering (social causes) | interests | Hobbies and activities , Politics and social issues (politics), Volunteering (social causes) | 2 | 76758137 | 90267570 |
6003139266461 | Movies (entertainment & media) | interests | Entertainment (leisure) , Movies (entertainment & media) | 2 | 1420386760 | 1670374830 |
6003141785766 | Mortgage loans (banking) | interests | Business and industry , Personal finance (banking), Mortgage loans (banking) | 2 | 144190748 | 169568320 |
6003142705949 | Computer processors (computer hardware) | interests | Technology (computers & electronics) , Computers (computers & electronics) , Computer processors (computer hardware) | 2 | 186229379 | 219005750 |
6003142974961 | Painting (visual art) | interests | Hobbies and activities, Arts and music (art) , Painting (visual art) | 2 | 402405442 | 473228800 |
6003143720966 | Personal finance (banking) | interests | Business and industry , Personal finance (banking) | 2 | 729818596 | 858266670 |
6003146442552 | Jazz music (music) | interests | Entertainment (leisure) , Music (entertainment & media), Jazz music (music) | 2 | 462368469 | 543745320 |
6003146718552 | Auto racing (motor sports) | interests | Sports and outdoors , Sports (sports) , Auto racing (motor sports) | 2 | 316189499 | 371838851 |
6003146729229 | Distilled beverage (liquor) | interests | Food and drink (consumables) , Alcoholic beverages (food & drink), Distilled beverage (liquor) | 2 | 204502551 | 240495000 |
6003147868152 | Parties (event) | interests | Entertainment (leisure) , Live events (entertainment), Parties (event) | 2 | 384128267 | 451734843 |
6003148544265 | Wine (alcoholic drinks) | interests | Food and drink (consumables) , Alcoholic beverages (food & drink), Wine (alcoholic drinks) | 2 | 332466045 | 390980070 |
6003151951349 | Computer servers (computing) | interests | Technology (computers & electronics), Computers (computers & electronics) , Computer servers (computing) | 2 | 87445790 | 102836250 |
6003153672865 | Online games (video games) | interests | Entertainment (leisure) , Games (leisure) , Online games (video games) | 2 | 595532287 | 700345970 |
6003154043305 | Performing arts (performing arts) | interests | Hobbies and activities , Arts and music (art) , Performing arts (performing arts) | 2 | 431488095 | 507430000 |
6003155333705 | Vegetarianism (diets) | interests | Food and drink (consumables), Food (food & drink) , Vegetarianism (diets) | 8 | 207809507 | 244383981 |
6003156321008 | Bars (bars, clubs & nightlife) | interests | Entertainment (leisure) , Live events (entertainment) , Bars (bars, clubs & nightlife) | 2 | 294046380 | 345798543 |
6003157824284 | Bollywood movies (movies) | interests | Entertainment (leisure) , Movies (entertainment & media), Bollywood movies (movies) | 2 | 374775850 | 440736400 |
6003159378782 | Cats (animals) | interests | Hobbies and activities, Pets (animals) , Cats (animals) | 2 | 448420365 | 527342350 |
6003159413034 | Fish (animals) | interests | Hobbies and activities, Pets (animals) , Fish (animals) | 2 | 321510238 | 378096040 |
6003161475030 | Comedy movies (movies) | interests | Entertainment (leisure) , Movies (entertainment & media), Comedy movies (movies) | 2 | 1006576522 | 1183733990 |
6003162931434 | College football (college sports) | interests | Sports and outdoors , Sports (sports) , College football (college sports) | 2 | 106642491 | 125411570 |
6003166397215 | Swimming (water sport) | interests | Sports and outdoors , Sports (sports) , Swimming (water sport) | 2 | 228292881 | 268472429 |
6003172448161 | TV talkshows (television show) | interests | Entertainment (leisure) , TV (movies & television) , TV talkshows (television show) | 2 | 131425399 | 154556270 |
6003172932634 | TV (movies & television) | interests | Entertainment (leisure) , TV (movies & television) | 2 | 990365017 | 1164669260 |
6003176101552 | Massively multiplayer online games (video games) | interests | Entertainment (leisure) , Games (leisure) , Massively multiplayer online games (video games) | 2 | 111371562 | 130972958 |
6003176678152 | Automobiles (vehicles) | interests | Hobbies and activities , Vehicles (transportation), Automobiles (vehicles) | 2 | 677437057 | 796665980 |
6003179515414 | Dance music (music) | interests | Entertainment (leisure) , Music (entertainment & media), Dance music (music) | 2 | 285610654 | 335878130 |
6003120620858 | Coffeehouses (coffee) | interests | Food and drink (consumables), Restaurants (dining) , Coffeehouses (coffee) | 2 | 411936607 | 484437450 |
6003188355978 | Dresses (apparel) | interests | Shopping and fashion , Fashion accessories (accessories), Dresses (apparel) | 2 | 573380000 | 674294881 |
6003194056672 | Fine art (visual art) | interests | Hobbies and activities, Arts and music (art) , Fine art (visual art) | 2 | 140074631 | 164727767 |
6003195554098 | Rhythm and blues music (music) | interests | Entertainment (leisure) , Music (entertainment & media) , Rhythm and blues music (music) | 2 | 669180255 | 786955980 |
6003195797498 | Cuisine (food & drink) | interests | Food and drink (consumables), Cuisine (food & drink) | 2 | 589915858 | 693741050 |
6003198370967 | Massively multiplayer online role-playing games (video games) | interests | Entertainment (leisure) , Games (leisure) , Massively multiplayer online role-playing games (video games) | 2 | 109827267 | 129156867 |
6003198476967 | Handbags (accessories) | interests | Shopping and fashion , Fashion accessories (accessories), Handbags (accessories) | 2 | 413353863 | 486104143 |
6003200340482 | Middle Eastern cuisine (food & drink) | interests | Food and drink (consumables) , Cuisine (food & drink) , Middle Eastern cuisine (food & drink) | 8 | 28441849 | 33447615 |
6003206216430 | Magazines (publications) | interests | Entertainment (leisure) , Reading (communication) , Magazines (publications) | 2 | 613485722 | 721459210 |
6003206308286 | Science fiction movies (movies) | interests | Entertainment (leisure) , Movies (entertainment & media) , Science fiction movies (movies) | 2 | 363505918 | 427482960 |
6003207605030 | Minivans (vehicle) | interests | Hobbies and activities , Vehicles (transportation), Minivans (vehicle) | 2 | 48699184 | 57270241 |
6003210799924 | Romance novels (publications) | interests | Entertainment (leisure) , Reading (communication) , Romance novels (publications) | 2 | 229731352 | 270164070 |
6003211401886 | Air travel (transportation) | interests | Hobbies and activities , Travel (travel & tourism) , Air travel (transportation) | 2 | 305795457 | 359615458 |
6003217093576 | Insurance (business & finance) | interests | Business and industry , Personal finance (banking) , Insurance (business & finance) | 2 | 340092619 | 399948920 |
6003220634758 | Discount stores (retail) | interests | Shopping and fashion , Shopping (retail) , Discount stores (retail) | 2 | 393583676 | 462854404 |
6003224441249 | Televisions (consumer electronics) | interests | Technology (computers & electronics) , Consumer electronics (computers & electronics), Televisions (consumer electronics) | 2 | 1077339829 | 1266951640 |
6003225325061 | Thriller movies (movies) | interests | Entertainment (leisure) , Movies (entertainment & media), Thriller movies (movies) | 2 | 553071904 | 650412560 |
6003225556345 | Hip hop music (music) | interests | Entertainment (leisure) , Music (entertainment & media), Hip hop music (music) | 2 | 824386198 | 969478170 |
6003225930699 | Cruises (travel & tourism business) | interests | Hobbies and activities , Travel (travel & tourism) , Cruises (travel & tourism business) | 2 | 172715314 | 203113210 |
6003232518610 | Parenting (children & parenting) | interests | Family and relationships , Parenting (children & parenting) | 2 | 284294627 | 334330482 |
6003234413249 | Home improvement (home & garden) | interests | Hobbies and activities , Home and garden , Home improvement (home & garden) | 2 | 335748624 | 394840382 |
6003240742699 | Seafood (food & drink) | interests | Food and drink (consumables), Food (food & drink) , Seafood (food & drink) | 2 | 270206906 | 317763322 |
6003243058188 | Diners (restaurant) | interests | Food and drink (consumables), Restaurants (dining) , Diners (restaurant) | 2 | 117957833 | 138718412 |
6003243604899 | Action movies (movies) | interests | Entertainment (leisure) , Movies (entertainment & media), Action movies (movies) | 2 | 627385552 | 737805410 |
6003246168013 | Simulation games (video games) | interests | Entertainment (leisure) , Games (leisure) , Simulation games (video games) | 2 | 92506020 | 108787080 |
6003247127613 | Ballet (dance) | interests | Entertainment (leisure) , Live events (entertainment), Ballet (dance) | 2 | 100333394 | 117992072 |
6003247790075 | Literature (publications) | interests | Entertainment (leisure) , Reading (communication) , Literature (publications) | 2 | 372953690 | 438593540 |
6003247890613 | Dancehalls (music) | interests | Entertainment (leisure) , Live events (entertainment), Dancehalls (music) | 2 | 103399718 | 121598069 |
6003248338072 | Casino games (gambling) | interests | Entertainment (leisure), Games (leisure) , Casino games (gambling) | 2 | 43101736 | 50687642 |
6003252179711 | Engineering (science) | interests | Business and industry, Engineering (science) | 2 | 469516258 | 552151120 |
6003254590688 | Spas (personal care) | interests | Shopping and fashion , Beauty (social concept), Spas (personal care) | 2 | 588815610 | 692447158 |
6003255640088 | Sunglasses (eyewear) | interests | Shopping and fashion , Fashion accessories (accessories), Sunglasses (eyewear) | 2 | 370515170 | 435725841 |
6003257757682 | Blues music (music) | interests | Entertainment (leisure) , Music (entertainment & media), Blues music (music) | 2 | 453873086 | 533754750 |
6003263791114 | Shopping (retail) | interests | Shopping and fashion, Shopping (retail) | 2 | 1436935629 | 1689836300 |
6003266061909 | Food (food & drink) | interests | Food and drink (consumables), Food (food & drink) | 2 | 1204339217 | 1416302920 |
6003266225248 | Jewelry (apparel) | interests | Shopping and fashion , Fashion accessories (accessories), Jewelry (apparel) | 2 | 721781530 | 848815080 |
6003266266843 | Fashion design (design) | interests | Business and industry , Design (design) , Fashion design (design) | 2 | 347376821 | 408515142 |
6003268182136 | TV reality shows (movies & television) | interests | Entertainment (leisure) , TV (movies & television) , TV reality shows (movies & television) | 2 | 520518945 | 612130280 |
6003269553527 | Sports (sports) | interests | Sports and outdoors, Sports (sports) | 2 | 1446967517 | 1701633800 |
6003270811593 | Higher education (education) | interests | Business and industry , Higher education (education) | 2 | 563361079 | 662512630 |
6003274262708 | Fiction books (publications) | interests | Entertainment (leisure) , Reading (communication) , Fiction books (publications) | 2 | 407642219 | 479387250 |
6003277229371 | Physical fitness (fitness) | interests | Fitness and wellness (fitness), Physical fitness (fitness) | 2 | 678866522 | 798347030 |
6003279598823 | Marketing (business & finance) | interests | Business and industry , Marketing (business & finance) | 2 | 605494039 | 712060990 |
6003280676501 | GPS devices (consumer electronics) | interests | Technology (computers & electronics) , Consumer electronics (computers & electronics), GPS devices (consumer electronics) | 2 | 24952948 | 29344667 |
6003283801502 | Thai cuisine (food & drink) | interests | Food and drink (consumables), Cuisine (food & drink) , Thai cuisine (food & drink) | 8 | 57123875 | 67177678 |
6003286289697 | Birds (animals) | interests | Hobbies and activities, Pets (animals) , Birds (animals) | 2 | 353079693 | 415221720 |
6003288647527 | Projectors (consumer electronics) | interests | Technology (computers & electronics) , Consumer electronics (computers & electronics), Projectors (consumer electronics) | 2 | 31618071 | 37182852 |
6003289911338 | Smartphones (consumer electronics) | interests | Technology (computers & electronics) , Consumer electronics (computers & electronics), Smartphones (consumer electronics) | 2 | 789714659 | 928704440 |
6003290005325 | Web development (websites) | interests | Business and industry , Online (computing) , Web development (websites) | 2 | 45666865 | 53704234 |
6003290811111 | Current events (politics) | interests | Hobbies and activities , Current events (politics) | 2 | 879551573 | 1034352650 |
6003297396138 | Banking (finance) | interests | Business and industry, Banking (finance) | 2 | 428565144 | 503992610 |
6003299204611 | Beverages (food & drink) | interests | Food and drink (consumables), Beverages (food & drink) | 2 | 854926352 | 1005393390 |
6003302121228 | Guitar (instruments) | interests | Hobbies and activities, Arts and music (art) , Guitar (instruments) | 2 | 150172134 | 176602430 |
6003304473660 | SUVs (vehicles) | interests | Hobbies and activities , Vehicles (transportation), SUVs (vehicles) | 2 | 232294159 | 273177931 |
6003306084421 | Yoga (fitness) | interests | Fitness and wellness (fitness), Yoga (fitness) | 2 | 382445073 | 449755406 |
6003306415421 | Greek cuisine (food & drink) | interests | Food and drink (consumables), Cuisine (food & drink) , Greek cuisine (food & drink) | 8 | 31516505 | 37063410 |
6003324287371 | Skiing (skiing & snowboarding) | interests | Sports and outdoors , Sports (sports) , Skiing (skiing & snowboarding) | 2 | 141235696 | 166093179 |
6003325186571 | Cameras (photography) | interests | Technology (computers & electronics) , Consumer electronics (computers & electronics), Cameras (photography) | 2 | 435776598 | 512473280 |
6003332344237 | Dogs (animals) | interests | Hobbies and activities, Pets (animals) , Dogs (animals) | 2 | 491744251 | 578291240 |
6003332483177 | Music videos (entertainment & media) | interests | Entertainment (leisure) , Music (entertainment & media) , Music videos (entertainment & media) | 2 | 985474268 | 1158917740 |
6003341579196 | Pop music (music) | interests | Entertainment (leisure) , Music (entertainment & media), Pop music (music) | 2 | 994586870 | 1169634160 |
6003342470823 | Board games (games) | interests | Entertainment (leisure), Games (leisure) , Board games (games) | 2 | 87881277 | 103348382 |
6003343485089 | Korean cuisine (food & drink) | interests | Food and drink (consumables) , Cuisine (food & drink) , Korean cuisine (food & drink) | 8 | 102158375 | 120138250 |
6003343997689 | Home Appliances (consumer electronics) | interests | Hobbies and activities , Home and garden , Home Appliances (consumer electronics) | 2 | 265301547 | 311994620 |
6003346311730 | Vietnamese cuisine (food & drink) | interests | Food and drink (consumables) , Cuisine (food & drink) , Vietnamese cuisine (food & drink) | 8 | 48440493 | 56966020 |
6003346592981 | Online shopping (retail) | interests | Shopping and fashion , Shopping (retail) , Online shopping (retail) | 2 | 1347410025 | 1584554190 |
6003348453981 | Shoes (footwear) | interests | Shopping and fashion, Clothing (apparel) , Shoes (footwear) | 2 | 841455391 | 989551540 |
6003348604581 | Fashion accessories (accessories) | interests | Shopping and fashion , Fashion accessories (accessories) | 2 | 978194413 | 1150356630 |
6003348662930 | Camping (outdoors activities) | interests | Sports and outdoors , Outdoor recreation (outdoors activities), Camping (outdoors activities) | 2 | 240108356 | 282367427 |
6003349175527 | Computer memory (computer hardware) | interests | Technology (computers & electronics), Computers (computers & electronics) , Computer memory (computer hardware) | 2 | 34725485 | 40837171 |
6003349442621 | Entertainment (leisure) | interests | Entertainment (leisure) | 2 | 1762191547 | 2072337260 |
6003351312828 | Musical theatre (performing arts) | interests | Entertainment (leisure) , Movies (entertainment & media) , Musical theatre (performing arts) | 2 | 99099132 | 116540580 |
6003351764757 | Triathlons (athletics) | interests | Sports and outdoors , Sports (sports) , Triathlons (athletics) | 8 | 95150246 | 111896690 |
6003353550130 | Motorcycles (vehicles) | interests | Hobbies and activities , Vehicles (transportation), Motorcycles (vehicles) | 2 | 415968877 | 489179400 |
6003359996821 | Nature (science) | interests | Hobbies and activities , Travel (travel & tourism), Nature (science) | 2 | 815391156 | 958900000 |
6003361714600 | Nightclubs (bars, clubs & nightlife) | interests | Entertainment (leisure) , Live events (entertainment) , Nightclubs (bars, clubs & nightlife) | 2 | 334577993 | 393463720 |
6003369240775 | Basketball (sport) | interests | Sports and outdoors, Sports (sports) , Basketball (sport) | 2 | 714404481 | 840139670 |
6003369782940 | Credit cards (credit & lending) | interests | Business and industry , Personal finance (banking) , Credit cards (credit & lending) | 2 | 434819319 | 511347520 |
6003370636074 | Search engine optimization (software) | interests | Business and industry , Online (computing) , Search engine optimization (software) | 2 | 36242695 | 42621410 |
6003371567474 | Entrepreneurship (business & finance) | interests | Business and industry , Entrepreneurship (business & finance) | 2 | 382208471 | 449477162 |
6003372667195 | Fast food restaurants (dining) | interests | Food and drink (consumables) , Restaurants (dining) , Fast food restaurants (dining) | 2 | 169866686 | 199763223 |
6003373175581 | Documentary movies (movies) | interests | Entertainment (leisure) , Movies (entertainment & media), Documentary movies (movies) | 2 | 440272559 | 517760530 |
6003375422677 | Drama movies (movies) | interests | Entertainment (leisure) , Movies (entertainment & media), Drama movies (movies) | 2 | 473430323 | 556754060 |
6003376089674 | American football (sport) | interests | Sports and outdoors , Sports (sports) , American football (sport) | 2 | 417768477 | 491295730 |
6003380576181 | Role-playing games (video games) | interests | Entertainment (leisure) , Games (leisure) , Role-playing games (video games) | 2 | 152068967 | 178833106 |
6003381994165 | Portable media players (audio equipment) | interests | Technology (computers & electronics) , Consumer electronics (computers & electronics), Portable media players (audio equipment) | 2 | 6968758 | 8195260 |
6003382151137 | Reptiles (animals) | interests | Hobbies and activities, Pets (animals) , Reptiles (animals) | 2 | 49090909 | 57730910 |
6003384248805 | Fitness and wellness (fitness) | interests | Fitness and wellness (fitness) | 8 | 1083752219 | 1274492610 |
6003385141743 | Racing games (video game) | interests | Entertainment (leisure) , Games (leisure) , Racing games (video game) | 2 | 123480765 | 145213380 |
6003385609165 | Recipes (food & drink) | interests | Food and drink (consumables), Cooking (food & drink) , Recipes (food & drink) | 2 | 480500399 | 565068470 |
6003387418453 | Web hosting (computing) | interests | Business and industry , Online (computing) , Web hosting (computing) | 2 | 24069693 | 28305960 |
6003387633593 | Drums (instruments) | interests | Hobbies and activities, Arts and music (art) , Drums (instruments) | 2 | 116439379 | 136932710 |
6003388314512 | Investment (business & finance) | interests | Business and industry , Personal finance (banking) , Investment (business & finance) | 2 | 412508707 | 485110240 |
6003389760112 | Social media marketing (marketing) | interests | Business and industry , Online (computing) , Social media marketing (marketing) | 2 | 84384732 | 99236446 |
6003390752144 | Shopping malls (retail) | interests | Shopping and fashion , Shopping (retail) , Shopping malls (retail) | 2 | 588304336 | 691845900 |
6003392512725 | Energy drinks (nonalcoholic beverage) | interests | Food and drink (consumables) , Beverages (food & drink) , Energy drinks (nonalcoholic beverage) | 2 | 97544710 | 114712580 |
6003394580331 | RVs (vehicle) | interests | Hobbies and activities , Vehicles (transportation), RVs (vehicle) | 2 | 53278409 | 62655410 |
6003395414271 | Construction (industry) | interests | Business and industry , Construction (industry) | 2 | 466283290 | 548349150 |
6003397425735 | Tennis (sport) | interests | Sports and outdoors, Sports (sports) , Tennis (sport) | 2 | 329849081 | 387902520 |
6003397496347 | Running (sport) | interests | Fitness and wellness (fitness), Running (sport) | 2 | 295862363 | 347934139 |
6003398056603 | Fast casual restaurants (restaurant) | interests | Food and drink (consumables) , Restaurants (dining) , Fast casual restaurants (restaurant) | 2 | 127329706 | 149739735 |
6003402305839 | Business (business & finance) | interests | Business and industry , Business (business & finance) | 2 | 997456139 | 1173008420 |
6003402518839 | Web design (websites) | interests | Business and industry, Online (computing) , Web design (websites) | 2 | 53903690 | 63390740 |
6003404634364 | Computers (computers & electronics) | interests | Technology (computers & electronics), Computers (computers & electronics) | 2 | 1176187032 | 1383195950 |
6003409043877 | Alcoholic beverages (food & drink) | interests | Food and drink (consumables) , Alcoholic beverages (food & drink) | 2 | 533115918 | 626944320 |
6003409392877 | Weddings (weddings) | interests | Family and relationships, Weddings (weddings) | 2 | 304885943 | 358545870 |
6003415393053 | Children’s clothing (apparel) | interests | Shopping and fashion , Clothing (apparel) , Children’s clothing (apparel) | 2 | 261869502 | 307958535 |
6003416777039 | Horses (animals) | interests | Hobbies and activities, Pets (animals) , Horses (animals) | 2 | 258434243 | 303918670 |
6003417378239 | Plays (performing arts) | interests | Entertainment (leisure) , Live events (entertainment), Plays (performing arts) | 2 | 205761207 | 241975180 |
6003420024431 | French cuisine (food & drink) | interests | Food and drink (consumables) , Cuisine (food & drink) , French cuisine (food & drink) | 2 | 89071692 | 104748310 |
6003420644631 | Non-fiction books (publications) | interests | Entertainment (leisure) , Reading (communication) , Non-fiction books (publications) | 2 | 36691106 | 43148741 |
6003422719241 | Charity and causes (social causes) | interests | Hobbies and activities , Politics and social issues (politics), Charity and causes (social causes) | 2 | 64685429 | 76070065 |
6003423342191 | Dance (art) | interests | Hobbies and activities, Arts and music (art) , Dance (art) | 2 | 545935068 | 642019640 |
6003423416540 | Free software (software) | interests | Technology (computers & electronics), Computers (computers & electronics) , Free software (software) | 2 | 561457967 | 660274570 |
6003424404140 | Marathons (running event) | interests | Sports and outdoors , Sports (sports) , Marathons (running event) | 2 | 189882514 | 223301837 |
6003430600057 | Lakes (body of water) | interests | Hobbies and activities , Travel (travel & tourism), Lakes (body of water) | 2 | 168765374 | 198468080 |
6003430696269 | Tourism (industry) | interests | Hobbies and activities , Travel (travel & tourism), Tourism (industry) | 2 | 773164277 | 909241190 |
6003431201869 | Beaches (places) | interests | Hobbies and activities , Travel (travel & tourism), Beaches (places) | 2 | 413340857 | 486088848 |
6003434373937 | Browser games (video games) | interests | Entertainment (leisure) , Games (leisure) , Browser games (video games) | 2 | 51808472 | 60926764 |
6003435096731 | Barbecue (cooking) | interests | Food and drink (consumables), Food (food & drink) , Barbecue (cooking) | 2 | 348044897 | 409300800 |
6003436950375 | Restaurants (dining) | interests | Food and drink (consumables), Restaurants (dining) | 2 | 730478154 | 859042310 |
6003443805331 | Fragrances (cosmetics) | interests | Shopping and fashion , Beauty (social concept), Fragrances (cosmetics) | 2 | 557077516 | 655123159 |
6003445506042 | Marriage (weddings) | interests | Family and relationships, Marriage (weddings) | 2 | 233638750 | 274759170 |
6003446055283 | Scooters (vehicle) | interests | Hobbies and activities , Vehicles (transportation), Scooters (vehicle) | 2 | 116142112 | 136583124 |
6003456330903 | Hair products (hair care) | interests | Shopping and fashion , Beauty (social concept) , Hair products (hair care) | 2 | 725744795 | 853475880 |
6003456388203 | Clothing (apparel) | interests | Shopping and fashion, Clothing (apparel) | 2 | 1151133418 | 1353732900 |
6003461162225 | Pet food (pet supplies) | interests | Hobbies and activities , Pets (animals) , Pet food (pet supplies) | 2 | 108416370 | 127497652 |
6003462707303 | Books (publications) | interests | Entertainment (leisure), Reading (communication), Books (publications) | 2 | 581479795 | 683820240 |
6003466585319 | Online banking (banking) | interests | Business and industry , Banking (finance) , Online banking (banking) | 2 | 90556292 | 106494200 |
6003470511564 | Do it yourself (DIY) | interests | Hobbies and activities, Home and garden , Do it yourself (DIY) | 2 | 418387661 | 492023890 |
6003473077165 | Weight training (weightlifting) | interests | Fitness and wellness (fitness) , Weight training (weightlifting) | 2 | 191719338 | 225461942 |
6003476182657 | Family (social concept) | interests | Family and relationships, Family (social concept) | 2 | 1029906930 | 1211170550 |
6003491283786 | Tea (nonalcoholic beverage) | interests | Food and drink (consumables), Beverages (food & drink) , Tea (nonalcoholic beverage) | 2 | 395174719 | 464725470 |
6003493980595 | Country music (music) | interests | Entertainment (leisure) , Music (entertainment & media), Country music (music) | 2 | 470572865 | 553393690 |
6003494675627 | Indian cuisine (food & drink) | interests | Food and drink (consumables) , Cuisine (food & drink) , Indian cuisine (food & drink) | 8 | 91538323 | 107649069 |
6003510075864 | Golf (sport) | interests | Sports and outdoors, Sports (sports) , Golf (sport) | 2 | 264069122 | 310545288 |
6003512053894 | Snowboarding (skiing & snowboarding) | interests | Sports and outdoors , Sports (sports) , Snowboarding (skiing & snowboarding) | 2 | 109337720 | 128581159 |
6003526234370 | Online advertising (marketing) | interests | Business and industry , Online (computing) , Online advertising (marketing) | 2 | 156407143 | 183934801 |
6003540150873 | Sports games (video games) | interests | Entertainment (leisure) , Games (leisure) , Sports games (video games) | 2 | 167944091 | 197502252 |
6003572379887 | Hotels (lodging) | interests | Hobbies and activities , Travel (travel & tourism), Hotels (lodging) | 2 | 603371853 | 709565300 |
6003578086487 | Real estate (industry) | interests | Business and industry , Real estate (industry) | 2 | 424648647 | 499386810 |
6003582500438 | Strategy games (games) | interests | Entertainment (leisure), Games (leisure) , Strategy games (games) | 2 | 57279099 | 67360221 |
6003582732907 | Rock music (music) | interests | Entertainment (leisure) , Music (entertainment & media), Rock music (music) | 2 | 959474906 | 1128342490 |
6003584163107 | Advertising (marketing) | interests | Business and industry , Advertising (marketing) | 2 | 465943911 | 547950040 |
6003586608473 | Writing (communication) | interests | Hobbies and activities , Arts and music (art) , Writing (communication) | 2 | 341526028 | 401634610 |
6003605717820 | Anime movies (movies) | interests | Entertainment (leisure) , Movies (entertainment & media), Anime movies (movies) | 2 | 385607074 | 453473920 |
6003626773307 | Coffee (food & drink) | interests | Food and drink (consumables), Beverages (food & drink) , Coffee (food & drink) | 2 | 535770493 | 630066100 |
6003629266583 | Hard drives (computer hardware) | interests | Technology (computers & electronics), Computers (computers & electronics) , Hard drives (computer hardware) | 2 | 122281267 | 143802770 |
6003633122583 | Heavy metal music (music) | interests | Entertainment (leisure) , Music (entertainment & media), Heavy metal music (music) | 2 | 603639736 | 709880330 |
6003641846820 | Veganism (diets) | interests | Food and drink (consumables), Food (food & drink) , Veganism (diets) | 2 | 324563265 | 381686400 |
6003647522546 | Card games (games) | interests | Entertainment (leisure), Games (leisure) , Card games (games) | 2 | 272395153 | 320336700 |
6003648059946 | Bodybuilding (sport) | interests | Fitness and wellness (fitness), Bodybuilding (sport) | 2 | 196138179 | 230658499 |
6003649983713 | Design (design) | interests | Business and industry, Design (design) | 2 | 920081998 | 1082016430 |
6003654559478 | Politics (politics) | interests | Hobbies and activities , Politics and social issues (politics), Politics (politics) | 8 | 460704668 | 541788690 |
6003656112304 | Economics (economics) | interests | Business and industry, Economics (economics) | 2 | 308751105 | 363091300 |
6003656296104 | Network storage (computers & electronics) | interests | Technology (computers & electronics) , Computers (computers & electronics) , Network storage (computers & electronics) | 2 | 18677605 | 21964864 |
6003656922020 | Horror movies (movies) | interests | Entertainment (leisure) , Movies (entertainment & media), Horror movies (movies) | 2 | 376549897 | 442822680 |
6003659420716 | Cooking (food & drink) | interests | Food and drink (consumables), Cooking (food & drink) | 2 | 752634277 | 885097910 |
6003668857118 | Pizza (food & drink) | interests | Food and drink (consumables), Food (food & drink) , Pizza (food & drink) | 2 | 441634838 | 519362570 |
6003668975718 | Puzzle video games (video games) | interests | Entertainment (leisure) , Games (leisure) , Puzzle video games (video games) | 2 | 288117984 | 338826750 |
6003703762913 | Law (law & legal services) | interests | Hobbies and activities , Politics and social issues (politics), Law (law & legal services) | 8 | 477592806 | 561649140 |
6003703931713 | Juice (nonalcoholic beverage) | interests | Food and drink (consumables) , Beverages (food & drink) , Juice (nonalcoholic beverage) | 2 | 223882925 | 263286320 |
6003716669862 | Consumer electronics (computers & electronics) | interests | Technology (computers & electronics) , Consumer electronics (computers & electronics) | 2 | 1380321853 | 1623258500 |
6003717247746 | Sculpture (art) | interests | Hobbies and activities, Arts and music (art) , Sculpture (art) | 2 | 132166649 | 155427980 |
6003717914546 | Hybrids (vehicle) | interests | Hobbies and activities , Vehicles (transportation), Hybrids (vehicle) | 2 | 63554330 | 74739893 |
6003729124262 | Audio equipment (electronics) | interests | Technology (computers & electronics) , Consumer electronics (computers & electronics), Audio equipment (electronics) | 2 | 43983308 | 51724371 |
6003778400853 | Retail (industry) | interests | Business and industry, Retail (industry) | 2 | 713008299 | 838497760 |
6003779859852 | Horseback riding (horse sport) | interests | Sports and outdoors , Outdoor recreation (outdoors activities), Horseback riding (horse sport) | 2 | 102889171 | 120997666 |
6003780008652 | Online (computing) | interests | Business and industry, Online (computing) | 2 | 1148217236 | 1350303470 |
6003780025252 | Drawing (visual art) | interests | Hobbies and activities, Arts and music (art) , Drawing (visual art) | 2 | 198107763 | 232974730 |
6003840140052 | Agriculture (industry) | interests | Business and industry , Agriculture (industry) | 2 | 389563392 | 458126550 |
6003899195666 | Photography (visual art) | interests | Hobbies and activities , Arts and music (art) , Photography (visual art) | 2 | 1117351836 | 1314005760 |
6003902397066 | Electronic music (music) | interests | Entertainment (leisure) , Music (entertainment & media), Electronic music (music) | 2 | 763266700 | 897601640 |
6003902462066 | Theme parks (leisure) | interests | Hobbies and activities , Travel (travel & tourism), Theme parks (leisure) | 2 | 199474285 | 234581760 |
6003940339466 | Video games (gaming) | interests | Entertainment (leisure), Games (leisure) , Video games (gaming) | 2 | 946113469 | 1112629440 |
6003985771306 | Technology (computers & electronics) | interests | Technology (computers & electronics) | 2 | 1510784438 | 1776682500 |
6004030160948 | Social media (online media) | interests | Business and industry , Online (computing) , Social media (online media) | 2 | 633785255 | 745331460 |
6004037107009 | Boats (watercraft) | interests | Hobbies and activities , Vehicles (transportation), Boats (watercraft) | 2 | 145653103 | 171288050 |
6004037400009 | Fast food (food & drink) | interests | Food and drink (consumables), Food (food & drink) , Fast food (food & drink) | 2 | 445818967 | 524283106 |
6004037726009 | Pets (animals) | interests | Hobbies and activities, Pets (animals) | 2 | 895994081 | 1053689040 |
6004037932409 | Management (business & finance) | interests | Business and industry , Management (business & finance) | 2 | 332392721 | 390893840 |
6004043913548 | Newspapers (publications) | interests | Entertainment (leisure) , Reading (communication) , Newspapers (publications) | 2 | 815218979 | 958697520 |
6004094205989 | German cuisine (food & drink) | interests | Food and drink (consumables) , Cuisine (food & drink) , German cuisine (food & drink) | 8 | 29112772 | 34236620 |
6004100985609 | Friendship (relationships) | interests | Family and relationships , Friendship (relationships) | 2 | 716429413 | 842520990 |
6004115167424 | Physical exercise (fitness) | interests | Fitness and wellness (fitness), Physical exercise (fitness) | 2 | 646978494 | 760846710 |
6004140335706 | Architecture (architecture) | interests | Business and industry , Architecture (architecture) | 2 | 433894345 | 510259750 |
6004160395895 | Travel (travel & tourism) | interests | Hobbies and activities , Travel (travel & tourism) | 2 | 1172422168 | 1378768470 |
6005609368513 | Software (computers & electronics) | interests | Technology (computers & electronics), Computers (computers & electronics) , Software (computers & electronics) | 2 | 925583622 | 1088486340 |
6007828099136 | Luxury goods (retail) | interests | Shopping and fashion , Shopping (retail) , Luxury goods (retail) | 2 | 673653435 | 792216440 |
6008832464480 | E-book readers (consumer electronics) | interests | Technology (computers & electronics) , Consumer electronics (computers & electronics), E-book readers (consumer electronics) | 2 | 45626557 | 53656832 |
6009248606271 | Food and drink (consumables) | interests | Food and drink (consumables) | 2 | 1347509744 | 1584671460 |
6010924093432 | Live events (entertainment) | interests | Entertainment (leisure) , Live events (entertainment) | 2 | 955524030 | 1123696260 |
6011366104268 | Women’s clothing (apparel) | interests | Shopping and fashion , Clothing (apparel) , Women’s clothing (apparel) | 2 | 598187925 | 703469000 |
6011515350975 | Politics and social issues (politics) | interests | Hobbies and activities , Politics and social issues (politics) | 8 | 1046674914 | 1230889700 |
6011994253127 | Men’s clothing (apparel) | interests | Shopping and fashion , Clothing (apparel) , Men’s clothing (apparel) | 2 | 455533027 | 535706840 |
job_titles_df <- get_fb_parameter_ids(type = "work_positions",
version = VERSION,
token = TOKEN,
q = "data")
job_titles_df %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%",
height = "300px")
id | name | coverage_lower_bound | coverage_upper_bound | subtext |
---|---|---|---|---|
107995062561111 | Data entry clerk | 93060 | 109439 | NA |
431299473579193 | Data science | 14659 | 17240 | NA |
103088336397390 | Data Architect | 6984 | 8214 | NA |
6914363428 | ADP | 119 | 141 | NA |
117496231707441 | NTT DATA North America | 13 | 16 | Plano, TX, US |
268835395007 | Datamatics | 9 | 11 | Datamatics · Mumbai, Maharashtra, India |
112076745475038 | Database design | 6 | 8 | NA |
361773733939664 | Tech Data Corporation | 2 | 3 | Singapore, Singapore |
182402158477555 | Dimension Data Asia Pacific | 1 | 2 | Singapore, Singapore |
112383832111981 | Hitachi Data Systems | 1 | 2 | NA |
Location Key
Users can be targeted by different types of locations,
including all users within a country, region (e.g., US state), city,
neighborhood, etc. The get_fb_parameter_ids
is used to
obtain the location key for different places. The type
parameter is used to define the type of location (e.g.,
"country"
, "region"
, etc.).
In addition to type
, the country_code
,
region_id
, key
and q
parameters
can be used to further refine searchers for locations. Providing an
input for country_code
, region_id
, and
key
(e.g., city key), will search for locations within
those larger locations. Providing an input to the q
parameter limits the search by name. For smaller geographic regions, an
input for q
is required.
country_group_df <- get_fb_parameter_ids(type = "country_group",
version = VERSION,
token = TOKEN)
country_df <- get_fb_parameter_ids(type = "country",
version = VERSION,
token = TOKEN)
us_states_df <- get_fb_parameter_ids(type = "region",
version = VERSION,
token = TOKEN,
country_code = "US")
ny_key <- us_states_df %>% filter(name == "New York") %>% pull(key)
ny_cities_df <- get_fb_parameter_ids(type = "city",
version = VERSION,
token = TOKEN,
region_id = ny_key,
q = "New York")
ny_cities_df %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%",
height = "300px")
key | name | type | country_code | country_name | region | region_id | supports_region | supports_city | geo_hierarchy_level | geo_hierarchy_name |
---|---|---|---|---|---|---|---|---|---|---|
2490299 | New York | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490629 | Otego | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488053 | Delanson | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491852 | Summit | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488965 | Hadley | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492286 | Wellsburg | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491500 | Sinclairville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489582 | Lake Success | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490154 | Morristown | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490567 | Old Westbury | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490076 | Millwood | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490463 | North Salem | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487428 | Brushton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491249 | Rushville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490095 | Modena | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490334 | Nissequogue | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488037 | Deansboro | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491482 | Shushan | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492587 | Woodbourne | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491349 | Schenevus | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490040 | Middleville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488915 | Greenwood | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490148 | Morris | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492015 | Troupsburg | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488236 | East Greenbush | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490930 | Port Jervis | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489403 | Johnson City | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488187 | East Aurora | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488309 | East Setauket | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492599 | Woodridge | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489120 | Henderson | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488733 | Gates | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | CITY |
2487596 | Cayuga | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487589 | Caton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492233 | Wassaic | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489375 | Jasper | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492466 | Westtown | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490695 | Parishville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487849 | Constable | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487456 | Burdett | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487011 | Ava | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488687 | Fultonville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488119 | Downsville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488558 | Floral Park | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487574 | Cassville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487277 | Bloomingburg | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491064 | Redfield | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491251 | Russell | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488767 | Gilbertsville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487531 | Canaseraga | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487599 | Cayuta | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487851 | Constantia | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491829 | Stratford | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487081 | Barneveld | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488658 | Freeville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489038 | Harford | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491730 | Spring Valley | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489685 | Limestone | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2673869 | Fort Drum | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489459 | Kennedy | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2480661 | Grand Island | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491384 | Sea Cliff | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488269 | East Massapequa | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489935 | Masonville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491277 | Saint James | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491248 | Rushford | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487960 | Croton-on-Hudson | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488253 | East Islip | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488184 | East Amherst | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491515 | Sleepy Hollow | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489009 | Hampton Bays | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490597 | Oran | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | CITY |
2487637 | Central Square | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490360 | North Bellport | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488279 | East Northport | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487580 | Castorland | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488449 | Esperance | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491822 | Stony Point | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487334 | Bradford | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489938 | Massapequa Park | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488951 | Guilford | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488288 | East Patchogue | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490561 | Old Forge | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489347 | Island Park | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490824 | Pine Bush | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489565 | Lake Grove | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489747 | Locust Valley | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488274 | East Moriches | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490070 | Millport | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488301 | East Rochester | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491001 | Putnam Valley | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489877 | Mannsville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490351 | North Babylon | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488643 | Franklin Square | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490088 | Mineville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491818 | Stony Brook | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490569 | Olivebridge | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487366 | Briarcliff Manor | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492453 | Westernville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490177 | Mount Kisco | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490957 | Pound Ridge | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490002 | Memphis | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492376 | West Islip | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489047 | Harpursville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489080 | Hastings-on-Hudson | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487057 | Ballston Spa | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488829 | Gorham | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489782 | Loudonville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489330 | Ireland Corners | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | CITY |
2492370 | West Hempstead | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490039 | Middletown, Orange County | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489581 | Lake Ronkonkoma | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487742 | Clayville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489496 | Kings Point | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491325 | Saranac Lake | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492251 | Watkins Glen | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492220 | Wappingers Falls | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490741 | Pearl River | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490765 | Penn Yan | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487718 | Circleville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488874 | Great Neck | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491634 | South Huntington | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489160 | Highland Falls | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488520 | Fire Island | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490038 | Middlesex | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487592 | Cattaraugus | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491267 | Sag Harbor | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490732 | Pavilion | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491334 | Savona | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488673 | Friendship | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488510 | Fillmore | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489213 | Honeoye | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487775 | Clymer | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490547 | Odessa | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490920 | Port Chester | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488970 | Hague | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491068 | Redwood | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488732 | Gasport | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488224 | East Fishkill | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490595 | Oppenheim | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491378 | Scottsville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490631 | Otisco | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | CITY |
2488757 | Ghent | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487168 | Bellerose | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488754 | Gerry | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489385 | Jeffersonville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487370 | Bridgeport | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489915 | Marion | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487850 | Constableville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488371 | Edmeston | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492465 | Westport | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492460 | Westmoreland | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491332 | Savannah | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487160 | Belfast | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487573 | Cassadaga | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490236 | Nedrow | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487774 | Clyde | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488317 | East Syracuse | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492302 | West Babylon | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490786 | Petersburg | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490766 | Pennellville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487549 | Carle Place | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488141 | Dundee | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492425 | West Seneca | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491749 | Stafford | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489414 | Jordan | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487669 | Chazy | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487348 | Brant | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487755 | Clifton Park | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489470 | Kerhonkson | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488473 | Falconer | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489183 | Hinsdale | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491463 | Shokan | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490508 | Norwood | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492401 | West Nyack | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491363 | Scio | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487383 | Bristol | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490445 | North New Hyde Park | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488101 | Dix Hills | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490045 | Milan | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488565 | Floyd | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2486900 | Altmar | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2486961 | Arkport | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490086 | Minerva | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489203 | Holley | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492148 | Verona | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492110 | Valley Cottage | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489352 | Italy | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492549 | Willsboro | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489830 | Machias | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489186 | Hobart | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488775 | Glasco | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489948 | Maybrook | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487747 | Cleveland | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489058 | Harrisville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489815 | Lyndonville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488967 | Hagaman | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487723 | Clarendon | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491739 | Springwater | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489592 | Lakeview | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488103 | Dobbs Ferry | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489004 | Hammond | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489294 | Hurleyville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491837 | Stuyvesant | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491474 | Shortsville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491747 | Staatsburg | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491967 | Tillson | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490607 | Orient | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490614 | Orleans | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | CITY |
2490202 | Mumford | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487482 | Busti | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | CITY |
2490554 | Old Bethpage | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489298 | Hyde Park | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489068 | Hartwick | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490645 | Ovid | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490965 | Prattsville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487883 | Corfu | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489699 | Lindley | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489381 | Jefferson | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489962 | McDonough | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487713 | Churchville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2486920 | Ancram | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488084 | Dexter | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488054 | Delevan | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492024 | Truxton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487090 | Barryville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487821 | Colton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488552 | Fleischmanns | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487765 | Clintondale | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487110 | Bay Shore | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491077 | Remsenburg | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487831 | Conesus | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492617 | Worcester | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487393 | Brocton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490335 | Niverville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489738 | Locke | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489544 | Lacona | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489655 | Leon | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | CITY |
2492152 | Verplanck | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487619 | Celoron | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489135 | Heuvelton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488941 | Groveland | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490222 | Napanoch | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488768 | Gilboa | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487056 | Ballston Lake | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489639 | Leeds | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488398 | Ellington | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491193 | Romulus | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490967 | Preble | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491134 | Ripley | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2486876 | Alexandria Bay | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489495 | Kings Park | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489577 | Lake Placid | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488455 | Evans Mills | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492324 | West Carthage | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492443 | West Winfield | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490929 | Port Jefferson Station | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491547 | Snyder | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490926 | Port Henry | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490919 | Port Byron | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491796 | Stewart Manor | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487727 | Clark Mills | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488118 | Dover Plains | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488609 | Fort Montgomery | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491601 | South Corning | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490835 | Pine Plains | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490356 | North Bay Shore | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489867 | Manhasset Hills | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492083 | Upper Brookville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491765 | Star Lake | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491606 | South Dayton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488713 | Garden City South | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487794 | Cold Spring Harbor | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487255 | Black River | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488712 | Garden City Park | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491629 | South Hempstead | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490446 | North Norwich | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488531 | Fishers Island | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491054 | Red Creek | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492312 | West Bloomfield | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490612 | Oriskany Falls | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489756 | Lonelyville | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | CITY |
2489733 | Lloyd Harbor | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491617 | South Glens Falls | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488879 | Great Valley | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487757 | Clifton Springs | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487185 | Bemus Point | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2486840 | Adams Center | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490924 | Port Ewen | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490555 | Old Brookville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489736 | Loch Sheldrake | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491234 | Rouses Point | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492073 | Union Springs | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489477 | Keuka Park | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489621 | Laurel Hollow | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490366 | North Boston | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492445 | Westbrookville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491716 | Speonk | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487579 | Castleton-on-Hudson | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491819 | Stony Creek | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491555 | Sodus Point | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489539 | La Fargeville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492494 | White Lake | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492346 | West Elmira | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492089 | Upper Nyack | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490730 | Paul Smiths | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491651 | South Nyack | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488597 | Fort Covington | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487464 | Burlington Flats | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491612 | South Fallsburg | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489585 | Lake View | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2486994 | Atlantic Beach | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489202 | Holland Patent | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488828 | Gordon Heights | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491512 | Slate Hill | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491493 | Silver Creek | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491614 | South Floral Park | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492111 | Valley Falls | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492421 | West Sand Lake | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492306 | West Batavia | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | CITY |
2489139 | Hewlett Harbor | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487284 | Blue Mountain Lake | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490825 | Pine City | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490454 | North Pole | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | CITY |
2489817 | Lyon Mountain | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487676 | Chenango Forks | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487003 | Au Sable Forks | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491035 | Raquette Lake | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2486879 | Alfred Station | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492441 | West Webster | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489282 | Huntington Bay | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490188 | Mount Upton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488843 | Grand Gorge | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488196 | East Bethany | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487132 | Beaver Falls | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491503 | Skaneateles Falls | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492422 | West Saugerties | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | CITY |
2490943 | Porter Corners | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491162 | Rock City Falls | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491842 | Sugar Loaf | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | CITY |
2486929 | Angola on the Lake | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492366 | West Hampton Dunes | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491957 | Three Mile Bay | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490485 | North White Plains | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491443 | Shelter Island Heights | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491081 | Rensselaer Falls | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492439 | West Valley | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488275 | East Nassau | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492202 | Walker Valley | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487760 | Clinton Corners | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491496 | Silver Springs | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490231 | Natural Bridge | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487352 | Brasher Falls | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488333 | East Williston | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487344 | Branchport | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490478 | North Valley Stream | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492011 | Tribes Hill | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490672 | Palatine Bridge | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492043 | Tuxedo Park | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491678 | South Valley Stream | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491297 | Salt Point | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490921 | Port Crane | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2486933 | Annandale-on-Hudson | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | CITY |
2490558 | Old Chatham | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490460 | North Rose | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491986 | Tomkins Cove | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490832 | Pine Island | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490932 | Port Leyden | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490657 | Oyster Bay Cove | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487681 | Cherry Grove | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | CITY |
2489563 | Lake Erie Beach | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | CITY |
2489626 | Lawrence, Nassau County | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488607 | Fort Johnson | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488015 | Davis Park | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | CITY |
2490938 | Port Washington North | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487792 | Cold Brook | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490889 | Point Lookout | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488280 | East Norwich | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488417 | Elmira Heights | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489965 | McGraw | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490449 | North Patchogue | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489313 | Indian Lake | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488247 | East Hills | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491746 | St. Bonaventure | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487626 | Center Moriches | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489051 | Harris | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490103 | Mohegan Lake | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487962 | Crown Heights | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491526 | Smallwood | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489263 | Hudson Falls | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492535 | Williston Park | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488878 | Great River | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488302 | East Rockaway | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489764 | Long Lake | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491613 | South Farmingdale | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491110 | Richfield Springs | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492235 | Water Mill | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492034 | Tupper Lake | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491887 | Sylvan Beach | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489557 | Lake Carmel | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492423 | West Sayville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487285 | Blue Point | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487142 | Bedford Hills | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490389 | North Creek | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489228 | Hopewell Junction | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492479 | Wheatley Heights | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490542 | Ocean Beach | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489578 | Lake Pleasant | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489214 | Honeoye Falls | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487956 | Cross River | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487793 | Cold Spring | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488385 | Elizaville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490059 | Miller Place | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488445 | Erin | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490186 | Mount Sinai | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491182 | Rocky Point | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490441 | North Massapequa | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488787 | Glen Head | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491118 | Richville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491353 | Schodack Landing | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489676 | Lido Beach | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490031 | Middle Island | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487169 | Bellerose Terrace | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487690 | Chestnut Ridge | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492652 | Yorktown Heights | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488197 | East Bloomfield | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490175 | Mount Hope | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489943 | Mastic Beach | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492187 | Wading River | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489384 | Jefferson Valley | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488916 | Greenwood Lake | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491427 | Sharon Springs | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492457 | Westhampton Beach | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491220 | Roslyn Heights | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490348 | North Amityville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491645 | South Lockport | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488727 | Garrison | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490379 | North Chili | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492078 | University Gardens | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489893 | Maple View | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | CITY |
2488656 | Freetown | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | CITY |
2489407 | Johnsonville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492375 | West Hurley | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489224 | Hoosick Falls | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490125 | Montour Falls | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487963 | Crown Point | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492514 | Whitney Point | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491359 | Schroon Lake | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488612 | Fort Plain | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488296 | East Quogue | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488599 | Fort Edward | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492095 | Upton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488464 | Fair Haven | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487519 | Campbell Hall | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492184 | Waccabuc | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490999 | Putnam Lake | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487278 | Bloomingdale | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492039 | Tuscarora | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | CITY |
2491566 | Sound Beach | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489572 | Lake Luzerne | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490729 | Pattersonville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487975 | Cuddebackville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487049 | Baldwin Harbor | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489153 | High Falls | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492396 | West Monroe | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489376 | Java Center | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488283 | East Otto | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489513 | Knapp Creek | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491312 | Sands Point | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487047 | Baldwin, Nassau County | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491164 | Rock Hill | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488661 | French Creek | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | CITY |
2490875 | Pleasant Valley | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487012 | Averill Park | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487036 | Baiting Hollow | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488614 | Fort Salonga | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491185 | Rodman | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490755 | Pelham Manor | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491360 | Schuyler Falls | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489820 | Lyons Falls | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491263 | Sackets Harbor | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489569 | Lake Katrine | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489343 | Irving | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487295 | Bolton Landing | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487098 | Batavia, Genesee County | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491108 | Richburg | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491816 | Stone Ridge | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487026 | Bagdad | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | CITY |
2488820 | Goldens Bridge | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490442 | North Merrick | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489440 | Keene Valley | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488697 | Gainesville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488217 | East Durham | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489463 | Kent | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490671 | Painted Post | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488841 | Grahamsville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491926 | Texas | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | CITY |
2487722 | Clarence Center | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489351 | Islip Terrace | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488812 | Glenwood Landing | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489728 | Livingston Manor | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488886 | Green Island | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492510 | Whitesville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487206 | Berlin | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489050 | Harriman | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2703980 | Manhattan | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | BOROUGH |
2491561 | Somers | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487052 | Baldwinsville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490247 | Nesconset | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487886 | Corning | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487787 | Cohoes | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487369 | Bridgehampton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489232 | Hornell | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488485 | Farmingdale | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487492 | Byron | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491341 | Sayville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489209 | Holtsville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487876 | Copiague | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487117 | Bayport | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487363 | Brewster | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489078 | Hastings | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488742 | Geneseo | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487313 | Boston | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487506 | Calverton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489506 | Kirkwood | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2486966 | Armonk | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492495 | White Plains | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488469 | Fairport | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488007 | Darien | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490728 | Patterson | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492250 | Watervliet | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491966 | Ticonderoga | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491174 | Rockland | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489855 | Malta | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492630 | Wyandanch | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491112 | Richland | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488997 | Hamilton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491217 | Roslyn | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489992 | Medford | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490114 | Montauk | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487717 | Cincinnatus | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489389 | Jericho | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490577 | Oneida | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492446 | Westbury | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489543 | Lackawanna | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488815 | Gloversville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2486914 | Amherst | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491398 | Selden | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487877 | Coram | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490320 | Niagara Falls | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487705 | Chittenango | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487390 | Brockport | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488808 | Glenville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487432 | Buchanan | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492533 | Williamsville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488143 | Dunkirk | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490617 | Orwell | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492228 | Warwick | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489196 | Holbrook | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488534 | Fishkill | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487819 | Colonie | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488711 | Garden City | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490273 | New Haven | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487613 | Cedarhurst | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487674 | Chemung | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488437 | Endicott | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487403 | Brookhaven | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490003 | Menands | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488418 | Elmont | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489993 | Medina | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490123 | Monticello | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490004 | Mendon | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488419 | Elmsford | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488438 | Endwell | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492552 | Wilmington | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491099 | Rhinebeck | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489905 | Marcy | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489882 | Manorville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489845 | Maine | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491560 | Solvay | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489919 | Marlboro | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489988 | Mechanicville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491784 | Sterling | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491455 | Sherrill | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492592 | Woodhull | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492108 | Valhalla | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488448 | Esopus | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490225 | Napoli | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491691 | Southold | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487783 | Coeymans | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489499 | Kingsbury | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490760 | Pendleton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491738 | Springville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490851 | Pittsford | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487650 | Chappaqua | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491373 | Scotia | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490307 | Newcomb | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490984 | Pulaski | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488408 | Elma | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490550 | Ohio | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490495 | Northport | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490276 | New Hyde Park | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488486 | Farmington | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487874 | Copenhagen | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489348 | Islandia | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488074 | Depew | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490878 | Pleasantville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491306 | Sanborn | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489370 | Jamesville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487689 | Chestertown | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488745 | Georgetown | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488648 | Fredonia | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488429 | Elwood | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492644 | Yaphank | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487630 | Centereach | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487426 | Brunswick | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488744 | Genoa | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490144 | Moriah | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489304 | Ilion | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491423 | Shandaken | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489726 | Liverpool | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490118 | Montebello | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491236 | Roxbury | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489613 | Larchmont | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2486855 | Akron | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489327 | Inwood | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489636 | Ledyard | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487095 | Barton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491388 | Searingtown | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488982 | Halfmoon | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492557 | Wilton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489667 | Lewiston | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490868 | Plattsburgh | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490955 | Poughkeepsie | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492611 | Woodstock | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488416 | Elmira | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491538 | Smithtown | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489122 | Henrietta | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487004 | Auburn | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491343 | Scarsdale | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489117 | Hempstead | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490625 | Oswego | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490000 | Melville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2673555 | Staten Island | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | BOROUGH |
2491889 | Syosset | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489083 | Hauppauge | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490252 | New Baltimore | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2790125 | Westchester County | medium_geo_area | US | United States | New York | 3875 | TRUE | TRUE | MEDIUM_GEO_AREA | COUNTY |
2488349 | Eaton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492075 | Uniondale | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492219 | Wantagh | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488654 | Freeport | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487715 | Cicero | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492246 | Watertown | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2790627 | Erie County | medium_geo_area | US | United States | New York | 3875 | TRUE | TRUE | MEDIUM_GEO_AREA | COUNTY |
2790617 | Rockland County | medium_geo_area | US | United States | New York | 3875 | TRUE | TRUE | MEDIUM_GEO_AREA | COUNTY |
2490084 | Mineola | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487672 | Cheektowaga | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489811 | Lynbrook | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491991 | Tonawanda | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489281 | Huntington | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489369 | Jamestown | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487556 | Carmel | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492019 | Troy | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490260 | New City | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492649 | York | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487404 | Brooklyn | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | BOROUGH |
2491013 | Queens | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | BOROUGH |
2491158 | Rochester | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487444 | Buffalo | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490287 | New Rochelle | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491890 | Syracuse | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2733673 | East New York | neighborhood | US | United States | New York | 3875 | TRUE | TRUE | NEIGHBORHOOD | NEIGHBORHOOD |
2490286 | New Paltz | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2486858 | Albany | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490300 | New York Mills | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492648 | Yonkers | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489355 | Ithaca | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490279 | New Lebanon | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489632 | Lebanon | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | CITY |
2492099 | Utica | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489056 | Harrison | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487241 | Binghamton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489500 | Kingston | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2790622 | Kings County | medium_geo_area | US | United States | New York | 3875 | TRUE | TRUE | MEDIUM_GEO_AREA | COUNTY |
2490259 | New Cassel | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491024 | Ramapo | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491192 | Rome | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490305 | Newburgh | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490297 | New Windsor | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491348 | Schenectady | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2486917 | Amityville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492232 | Washingtonville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488831 | Goshen | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491229 | Rotterdam | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491904 | Tarrytown | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490221 | Nanuet | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491195 | Ronkonkoma | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488995 | Hamburg | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490301 | Newark | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492651 | Yorktown | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489933 | Maryland | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490271 | New Hampton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490993 | Purchase | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490752 | Peekskill | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488743 | Geneva | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490544 | Oceanside | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488341 | Eastchester | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489662 | Levittown | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490156 | Morrisville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491385 | Seaford | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487214 | Bethel | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489615 | Latham | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491080 | Rensselaer | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2790113 | Onondaga County | medium_geo_area | US | United States | New York | 3875 | TRUE | TRUE | MEDIUM_GEO_AREA | COUNTY |
2487868 | Cooperstown | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491141 | Riverhead | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487402 | Brookfield | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491256 | Rye | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490516 | Nyack | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2673772 | Cornwall | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490011 | Merrick | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2790628 | Ulster County | medium_geo_area | US | United States | New York | 3875 | TRUE | TRUE | MEDIUM_GEO_AREA | COUNTY |
2490549 | Ogdensburg | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490763 | Penfield | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492155 | Vestal | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489147 | Hicksville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490856 | Plainview | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491840 | Suffern | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487124 | Beacon | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487360 | Brentwood | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490568 | Olean | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488949 | Guilderland | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489740 | Lockport | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487399 | Bronxville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2486918 | Amsterdam | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489344 | Irvington | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490691 | Paris | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489937 | Massapequa | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487738 | Clay | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487219 | Bethpage | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487023 | Babylon | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492598 | Woodmere | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491014 | Queensbury | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2789899 | Orange County | medium_geo_area | US | United States | New York | 3875 | TRUE | TRUE | MEDIUM_GEO_AREA | COUNTY |
2487893 | Cortland | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491462 | Shirley | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489698 | Lindenhurst | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491701 | Sparkill | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487826 | Commack | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489337 | Irondequoit | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488442 | Ephratah | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490723 | Patchogue | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489866 | Manhasset | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487291 | Bohemia | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490583 | Oneonta | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488487 | Farmingville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489001 | Hamlin | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487009 | Austerlitz | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487786 | Cohocton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487737 | Claverack | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2486944 | Aquebogue | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492104 | Valatie | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491253 | Russia | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489200 | Holland | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488514 | Fine | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488723 | Garnerville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491331 | Sauquoit | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492531 | Williamson | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491809 | Stockton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491976 | Tivoli | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488590 | Forestville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491902 | Tannersville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490037 | Middleport | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489908 | Margaretville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490309 | Newfield | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490674 | Palenville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488345 | Eastport | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492627 | Wurtsboro | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490226 | Narrowsburg | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487524 | Canaan | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490945 | Portland | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489096 | Hawthorne | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491519 | Slingerlands | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490153 | Morrisonville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489445 | Keeseville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491663 | South Salem | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490655 | Oxford | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2486990 | Athens | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490126 | Montrose | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489006 | Hammondsport | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491731 | Springfield | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491039 | Ravena | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490781 | Peru | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492212 | Walton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490189 | Mount Vernon | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488271 | East Meadow | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492172 | Virgil | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491056 | Red Hook | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490937 | Port Washington | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488589 | Forestport | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488807 | Glens Falls | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488803 | Glenmont | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492239 | Waterford | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487192 | Bennington | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490778 | Persia | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | CITY |
2488836 | Gowanda | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489323 | Inlet | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489704 | Lisbon | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492194 | Wainscott | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490249 | Neversink | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487154 | Beekmantown | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2486927 | Angola | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2486911 | Amenia | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488636 | Frankfort | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492277 | Weedsport | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491708 | Speculator | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490676 | Palisades | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487798 | Colden | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491202 | Roscoe | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492563 | Windham | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488709 | Gansevoort | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490928 | Port Jefferson | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492249 | Waterville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490106 | Moira | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490437 | North Lindenhurst | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491088 | Rexford | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492114 | Valley Stream | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490803 | Phoenicia | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490852 | Pittstown | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492638 | Wyoming | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487635 | Central Islip | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488042 | Deer Park | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492179 | Voorheesville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491470 | Shoreham | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491269 | Sagaponack | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487204 | Berkshire | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492554 | Wilson | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488180 | Earlville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487518 | Campbell | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487666 | Chaumont | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489587 | Lakeland | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488649 | Freedom | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492532 | Williamstown | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490680 | Panama | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491323 | Saranac | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489454 | Kendall | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488223 | East Farmingdale | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488670 | Frewsburg | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489284 | Huntington Station | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491111 | Richford | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491019 | Quogue | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492636 | Wynantskill | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488011 | Davenport | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488546 | Flanders | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488076 | Derby | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487657 | Charlton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489008 | Hampton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491523 | Sloatsburg | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490611 | Oriskany | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487207 | Berne | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487296 | Bombay | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488782 | Glen Cove | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489836 | Madrid | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2486937 | Apalachin | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487182 | Belmont | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491521 | Sloan | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489061 | Hartford | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490801 | Philmont | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492452 | Westerlo | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491782 | Stephentown | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490476 | North Tonawanda | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490067 | Millerton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492650 | Yorkshire | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491033 | Ransomville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488133 | Duanesburg | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489727 | Livingston | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490953 | Pottersville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491178 | Rockville Centre | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488107 | Dolgeville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488450 | Essex | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489541 | LaFayette | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490553 | Olcott | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491354 | Schoharie | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490902 | Pompey | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489879 | Manorhaven | subcity | US | United States | New York | 3875 | TRUE | TRUE | SUBCITY | CITY |
2487265 | Blauvelt | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487668 | Chautauqua | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489171 | Hillsdale | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487501 | Calcium | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491735 | Springs | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488044 | Deerfield | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490206 | Munnsville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487871 | Copake | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491196 | Roosevelt | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487362 | Brewerton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492507 | Whitesboro | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487811 | Collins | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488359 | Eden | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488900 | Greenlawn | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488050 | Defreestville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487664 | Chatham | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489175 | Hilton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491372 | Scotchtown | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490758 | Pembroke | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490964 | Prattsburgh | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491327 | Saratoga Springs | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2486857 | Alabama | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489065 | Hartsdale | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490215 | Muttontown | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490333 | Niskayuna | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488860 | Granville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491714 | Spencerport | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490633 | Otisville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490900 | Pomona | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490956 | Poughquag | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492196 | Walden | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490599 | Orangeburg | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487838 | Congers | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487721 | Clarence | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492271 | Webster | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491399 | Selkirk | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490524 | Oakdale | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492570 | Wingdale | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489137 | Hewlett | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487532 | Canastota | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488996 | Hamden | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488492 | Fayetteville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488057 | Delmar | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489552 | Lagrangeville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489401 | Johnsburg | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487176 | Bellport | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2486964 | Arlington | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489942 | Mastic | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489112 | Hector | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489125 | Herkimer | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491213 | Rosendale | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2486854 | Airmont | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490809 | Piermont | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487414 | Brookville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490054 | Millbrook | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488475 | Fallsburg | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489945 | Mattituck | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489522 | Knox | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489600 | Lancaster | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488468 | Fairmount | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490146 | Moriches | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491246 | Rush | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492021 | Trumansburg | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488572 | Fonda | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491362 | Schuylerville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492177 | Volney | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492659 | Youngstown | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487070 | Bardonia | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492283 | Wells | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492456 | Westhampton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490588 | Ontario | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487068 | Barcelona | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489194 | Hogansburg | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492240 | Waterloo | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2486835 | Accord | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491328 | Sardinia | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492135 | Varysburg | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490845 | Piseco | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488370 | Edinburg | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488838 | Grafton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489505 | Kirkville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489168 | Hillburn | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487638 | Central Valley | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492414 | West Point | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487263 | Blasdell | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487379 | Brightwaters | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2492214 | Walworth | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491346 | Schaghticoke | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489913 | Marilla | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489368 | Jamesport | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489244 | Houghton | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491380 | Scriba | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487840 | Conklin | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489955 | Mayville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491955 | Thornwood | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487120 | Bayville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490804 | Phoenix | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2486860 | Albertson | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2488393 | Ellenville | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489946 | Mattydale | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489324 | Interlaken | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2486904 | Amagansett | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491121 | Ridge | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490112 | Monsey | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489433 | Katonah | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2487986 | Cutchogue | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489378 | Jay | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490854 | Plainedge | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2489858 | Malverne | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2790636 | Lewis County | medium_geo_area | US | United States | New York | 3875 | TRUE | TRUE | MEDIUM_GEO_AREA | COUNTY |
2488907 | Greenvale | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2491692 | Southport | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490780 | Perth | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
2490675 | Palermo | city | US | United States | New York | 3875 | TRUE | TRUE | NA | NA |
Location Key with Coordinates/Geometries
When querying locations using get_fb_parameter_ids
,
setting add_location_coords
to TRUE
adds
coordinates and, when available, geometries.
ny_cities_coords_df <- get_fb_parameter_ids(type = "city",
version = VERSION,
token = TOKEN,
region_id = ny_key,
q = "New York",
add_location_coords = T)
leaflet() %>%
addTiles() %>%
addCircles(data = ny_cities_coords_df,
popup = ~name)
Get coordinates/geometries for location keys
Above we show that, when using get_fb_parameter_ids
,
coordinates/geometries of locations can be added by setting
add_location_coords
to TRUE
. However,
coordinates/geometries can also be queried using location keys.
Retrieving locations/coordinates for many locations can take a long
time. Consequently, we may want to (1) use
get_fb_parameter_ids
to obtain location keys, (2) filter
keys to relevant keys, then (3) query coordinates/geometries for
relevant locations.
For valid location keys, the function will return coordinates (latitude and longitude). When available, the function will also return the geometry.
Below we show an example for obtaining geometries for Washington, DC zip codes
## All Washington, DC zip codes start with 20
zip_df <- get_fb_parameter_ids(type = "zip",
q = "20",
country_code = "US",
version = VERSION,
token = TOKEN)
zip_dc_df <- zip_df %>%
filter(region == "Washington, District of Columbia")
zip_dc_sf <- get_location_coords(location_unit_type = "zip",
location_keys = zip_dc_df$key,
version = VERSION,
token = TOKEN)
leaflet() %>%
addTiles() %>%
addPolygons(data = zip_dc_sf,
popup = ~name)
Querying Data
The query_fb_marketing_api
function enables querying
daily and monthly active users for specific locations and by specific
types. Many parameters rely on IDs obtained from the
get_fb_parameter_ids
function. For example,
get_fb_parameter_ids
can be used to obtain the location key
for New York City and the interest parameter ID for “Music
(entertainment & media)”; these IDs can then be used in
query_fb_marketing_api
to obtain the number of Facebook
users interested in music that live in New York City.
Different Location Types
The number of daily and monthly active Facebook users can be queried (1) around a specific point (setting the latitude and longitude and the radius around this point), and (2) for a specific geographic (e.g., country, region, city, neighborhood, etc.). For small geographies, such as neighborhoods, a radius can also be set.
Radius around lat/lon
## All Facebook Users by Radius (Near NYC)
query_fb_marketing_api(location_unit_type = "coordinates",
lat_lon = c(40.712, -74.006),
radius = 5,
radius_unit = "kilometer",
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
estimate_dau | estimate_mau_lower_bound | estimate_mau_upper_bound | location_unit_type | location_types | radius | radius_unit | gender | age_min | age_max | latitude | longitude | api_call_time_utc |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1778265 | 2300000 | 2700000 | coordinates | home or recent | 5 | kilometer | 1 or 2 | 18 | 65 | 40.712 | -74.006 | 2024-05-06 17:01:19 |
Facebook enables querying a specific location to determine a
suggested radius to reach enough people (see Facebook
documentation here). We can use the
get_fb_suggested_radius
function to get the suggested
radius. Below shows the querying the suggested radius for Paris, France
and Paris, Kentucky.
# Paris, France
get_fb_suggested_radius(location = c(48.856667, 2.352222),
version = VERSION,
token = TOKEN) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
suggested_radius | distance_unit |
---|---|
1 | kilometer |
# Paris, Kentucky
get_fb_suggested_radius(location = c(38.209682, -84.253915),
version = VERSION,
token = TOKEN) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
suggested_radius | distance_unit |
---|---|
25 | kilometer |
Location IDs - Country, State, District, City, Neighborhood, etc.
We can also query using different location types, including
countries, cities, etc. The get_fb_parameter_ids()
function
can be used to extract location keys for different location types; the
location keys can then be used in the
query_fb_marketing_api()
. The below table indicates all the
location types supported by the package.
-
Location Type: This is specified (1) in the
type
parameter in theget_fb_parameter_ids()
function and in thelocation_unit_type
parameter in thequery_fb_marketing_api()
function - Radius Can be Specified: For these location types, a radius can optionally be specified; for example, to specify a location and it’s surrounding area.
- US Only: These location types can only be used for the US
Location Type | Radius Can be Specified | US Only | Example |
---|---|---|---|
country_group | No | No | World Wide |
country | No | No | United States |
region | No | No | New York |
large_geo_area | No | No | Akkar, Lebanon |
medium_geo_area | No | No | Henrico County, Virginia, USA |
small_geo_area | No | No | El Rosario, Spain |
city | Yes | No | New York City |
subcity | No | No | Manhattan |
neighborhood | No | No | East Village, Manhattan |
zip | No | Yes | 90210 |
geo_market | No | Yes | New York |
electoral_district | No | Yes | New York’s 18th District, 2020 Census |
Below shows examples for querying Facebook users for each type of
location type. Note that when entering the type
in
get_fb_parameter_ids
, the singular is used
(e.g., "country"
), while when entering the
type
in query_fb_marketing_api
, the
plural is used (e.g., "countries"
). Using
the singular type to obtain the IDs and the plural to query the number
of Facebook users mimics how parameters are entered in the Facebook
Marketing API.
Country Groups
#### Country Group: World Wide
loc_df <- get_fb_parameter_ids(type = "country_group",
version = VERSION, token = TOKEN)
query_fb_marketing_api(
location_unit_type = "country_groups",
location_keys = loc_df %>%
filter(name == "Worldwide") %>%
pull(key),
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
estimate_dau | estimate_mau_lower_bound | estimate_mau_upper_bound | location_unit_type | location_types | location_keys | gender | age_min | age_max | api_call_time_utc |
---|---|---|---|---|---|---|---|---|---|
0 | 2740800000 | 3224400000 | country_groups | home or recent | worldwide | 1 or 2 | 18 | 65 | 2024-05-06 17:01:20 |
Country
#### Country: United States
loc_df <- get_fb_parameter_ids(type = "country",
version = VERSION, token = TOKEN)
query_fb_marketing_api(
location_unit_type = "countries",
location_keys = loc_df %>%
filter(name == "United States") %>%
pull(key),
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
estimate_dau | estimate_mau_lower_bound | estimate_mau_upper_bound | location_unit_type | location_types | location_keys | gender | age_min | age_max | api_call_time_utc |
---|---|---|---|---|---|---|---|---|---|
219374690 | 234900000 | 276400000 | countries | home or recent | US | 1 or 2 | 18 | 65 | 2024-05-06 17:01:21 |
Region
#### Region: New York (state)
region_df <- get_fb_parameter_ids(type = "region", country_code = "US",
version = VERSION, token = TOKEN)
query_fb_marketing_api(
location_unit_type = "regions",
location_keys = region_df %>%
filter(name == "New York") %>%
pull(key),
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
estimate_dau | estimate_mau_lower_bound | estimate_mau_upper_bound | location_unit_type | location_types | location_keys | gender | age_min | age_max | api_call_time_utc |
---|---|---|---|---|---|---|---|---|---|
13758866 | 14700000 | 17300000 | regions | home or recent | 3875 | 1 or 2 | 18 | 65 | 2024-05-06 17:01:22 |
Large Geographic Area
The Facebook Marketing Targeting Search provides the following description about large geographic areas: “Known commonly as a district or governate covering hundreds of square kilometers or more. Example: Akkar in Lebanon.”
#### Large Metro Area
loc_df <- get_fb_parameter_ids(type = "large_geo_area",
country_code = "LB",
q = "Akkar",
version = VERSION, token = TOKEN)
query_fb_marketing_api(
location_unit_type = "large_geo_areas",
location_keys = loc_df %>%
filter(name == "Akkar") %>%
pull(key),
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
estimate_dau | estimate_mau_lower_bound | estimate_mau_upper_bound | location_unit_type | location_types | location_keys | gender | age_min | age_max | api_call_time_utc |
---|---|---|---|---|---|---|---|---|---|
94014 | 130800 | 153800 | large_geo_areas | home or recent | 1321105 | 1 or 2 | 18 | 65 | 2024-05-06 17:01:23 |
Medium Geographic Area
The Facebook Marketing Targeting Search provides the following description about medium geographic areas: “Known commonly as a county, covering more than one city. Example: Henrico county in the state of Virginia in United States.”
#### Large Metro Area
loc_df <- get_fb_parameter_ids(type = "medium_geo_area",
country_code = "US",
q = "Henrico",
version = VERSION, token = TOKEN)
query_fb_marketing_api(
location_unit_type = "medium_geo_areas",
location_keys = loc_df %>%
filter(name == "Henrico") %>%
pull(key),
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
estimate_dau | estimate_mau_lower_bound | estimate_mau_upper_bound | location_unit_type | location_types | location_keys | gender | age_min | age_max | api_call_time_utc |
---|---|---|---|---|---|---|---|---|---|
159379 | 197600 | 232500 | medium_geo_areas | home or recent | 2701973 | 1 or 2 | 18 | 65 | 2024-05-06 17:01:24 |
Small Geographic Area
The Facebook Marketing Targeting Search provides the following description about small geographic areas: “Known commonly as a residential area near a city or town. Example: El Rosario near Marbella in Spain.”
#### Large Metro Area
loc_df <- get_fb_parameter_ids(type = "small_geo_area",
country_code = "ES",
q = "El",
version = VERSION, token = TOKEN)
query_fb_marketing_api(
location_unit_type = "small_geo_areas",
location_keys = loc_df %>%
filter(name == "El Rosario") %>%
pull(key),
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
estimate_dau | estimate_mau_lower_bound | estimate_mau_upper_bound | location_unit_type | location_types | location_keys | gender | age_min | age_max | api_call_time_utc |
---|---|---|---|---|---|---|---|---|---|
6884 | 7900 | 9300 | small_geo_areas | home or recent | 2713574 | 1 or 2 | 18 | 65 | 2024-05-06 17:01:25 |
City
#### City: New York City
loc_df <- get_fb_parameter_ids(type = "city",
region_id = region_df %>%
filter(name == "New York") %>%
pull(key),
q = "New York",
version = VERSION, token = TOKEN)
## Facebook users in NYC
query_fb_marketing_api(
location_unit_type = "cities",
location_keys = loc_df %>% filter(name == "New York") %>% pull(key),
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
estimate_dau | estimate_mau_lower_bound | estimate_mau_upper_bound | location_unit_type | location_types | location_keys | gender | age_min | age_max | api_call_time_utc |
---|---|---|---|---|---|---|---|---|---|
7057416 | 7900000 | 9300000 | cities | home or recent | 2490299 | 1 or 2 | 18 | 65 | 2024-05-06 17:01:29 |
## Facebook users in and 10 miles around NYC
city_r_df <- query_fb_marketing_api(
location_unit_type = "cities",
location_keys = loc_df %>% filter(name == "New York") %>% pull(key),
radius = 10,
radius_unit = "mile",
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
Subcity
#### Subcity: Manhattan
loc_df <- get_fb_parameter_ids(type = "subcity",
region_id = region_df %>%
filter(name == "New York") %>%
pull(key),
q = "Manhattan",
version = VERSION, token = TOKEN)
query_fb_marketing_api(
location_unit_type = "subcities",
location_keys = loc_df %>% filter(name == "Manhattan") %>% pull(key),
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
estimate_dau | estimate_mau_lower_bound | estimate_mau_upper_bound | location_unit_type | location_types | location_keys | gender | age_min | age_max | api_call_time_utc |
---|---|---|---|---|---|---|---|---|---|
2050996 | 2600000 | 3e+06 | subcities | home or recent | 2703980 | 1 or 2 | 18 | 65 | 2024-05-06 17:01:31 |
Neighborhood
loc_df <- get_fb_parameter_ids(type = "neighborhood",
region_id = region_df %>%
filter(name == "New York") %>%
pull(key),
q = "East Village",
version = VERSION, token = TOKEN)
query_fb_marketing_api(
location_unit_type = "neighborhoods",
location_keys = loc_df %>%
filter(name == "East Village, Manhattan") %>%
pull(key),
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
estimate_dau | estimate_mau_lower_bound | estimate_mau_upper_bound | location_unit_type | location_types | location_keys | gender | age_min | age_max | api_call_time_utc |
---|---|---|---|---|---|---|---|---|---|
48063 | 65800 | 77400 | neighborhoods | home or recent | 2728364 | 1 or 2 | 18 | 65 | 2024-05-06 17:01:32 |
Zip Code
## Zip codes can be directly entered as "US:[Zip Code]"
query_fb_marketing_api(
location_unit_type = "zips",
location_keys = "US:90210",
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
estimate_dau | estimate_mau_lower_bound | estimate_mau_upper_bound | location_unit_type | location_types | location_keys | gender | age_min | age_max | api_call_time_utc |
---|---|---|---|---|---|---|---|---|---|
31834 | 39600 | 46600 | zips | home or recent | US:90210 | 1 or 2 | 18 | 65 | 2024-05-06 17:01:32 |
## Zip codes can also be searched for using: "get_fb_parameter_ids"
loc_df <- get_fb_parameter_ids(type = "zip",
q = "9", # Search using numbers
version = VERSION, token = TOKEN)
query_fb_marketing_api(
location_unit_type = "zips",
location_keys = loc_df %>% filter(name == "90210") %>% pull(key),
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
estimate_dau | estimate_mau_lower_bound | estimate_mau_upper_bound | location_unit_type | location_types | location_keys | gender | age_min | age_max | api_call_time_utc |
---|---|---|---|---|---|---|---|---|---|
31834 | 39600 | 46600 | zips | home or recent | US:90210 | 1 or 2 | 18 | 65 | 2024-05-06 17:01:42 |
Geo Market (U.S. Designated Market Areas)
loc_df <- get_fb_parameter_ids(type = "geo_market",
version = VERSION, token = TOKEN)
query_fb_marketing_api(
location_unit_type = "geo_markets",
location_keys = loc_df %>%
filter(name == "New York") %>%
pull(key),
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
estimate_dau | estimate_mau_lower_bound | estimate_mau_upper_bound | location_unit_type | location_types | location_keys | gender | age_min | age_max | api_call_time_utc |
---|---|---|---|---|---|---|---|---|---|
15658746 | 16800000 | 19800000 | geo_markets | home or recent | DMA:501 | 1 or 2 | 18 | 65 | 2024-05-06 17:01:42 |
Electoral Districts
loc_df <- get_fb_parameter_ids(type = "electoral_district",
q = "New York",
version = VERSION, token = TOKEN)
query_fb_marketing_api(
location_unit_type = "electoral_districts",
location_keys = loc_df %>%
filter(name == "New York's 18th District - 2020 Census") %>%
pull(key),
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
estimate_dau | estimate_mau_lower_bound | estimate_mau_upper_bound | location_unit_type | location_types | location_keys | gender | age_min | age_max | api_call_time_utc |
---|---|---|---|---|---|---|---|---|---|
434981 | 528800 | 622100 | electoral_districts | home or recent | US:NY18:2020 | 1 or 2 | 18 | 65 | 2024-05-06 17:01:44 |
Querying data using parameter IDs
Using one parameter ID per parameter type
We use parameter IDs to query the number of Facebook users by
behaviors, interests, etc. Below we show examples querying data by
behaviors and interests. An AND condition is used when parameters are
entered for multiple parameter types. For example, the third example
shows querying users by a behavior and an interest—setting a value in
query_fb_marketing_api
for the behaviors
(commuters) and interests
(music) parameters. In this case,
the function determines the number of Facebook users that are commuters
AND have an interest in music.
# Likely commute to work in US
beh_comm_id <- behaviors_df %>% filter(name == "Commuters") %>% pull(id)
query_fb_marketing_api(location_unit_type = "countries",
location_keys = "US",
behaviors = beh_comm_id,
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN)
#> estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound
#> 1 20968885 22000000 25900000
#> location_unit_type location_types location_keys behaviors gender age_min
#> 1 countries home or recent US 6013516370183 1 or 2 18
#> age_max api_call_time_utc
#> 1 65 2024-05-06 17:01:45
# Interested in music in US
int_music_id <- interests_df %>% filter(name == "Music (entertainment & media)") %>% pull(id)
query_fb_marketing_api(location_unit_type = "countries",
location_keys = "US",
interests = int_music_id,
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN)
#> estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound
#> 1 187777990 178600000 210100000
#> location_unit_type location_types location_keys interests gender age_min
#> 1 countries home or recent US 6003020834693 1 or 2 18
#> age_max api_call_time_utc
#> 1 65 2024-05-06 17:01:46
# Likely commute to work AND interested in music in US
query_fb_marketing_api(location_unit_type = "countries",
location_keys = "US",
behaviors = beh_comm_id,
interests = int_music_id,
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN)
#> estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound
#> 1 18508523 17400000 20500000
#> location_unit_type location_types location_keys interests behaviors
#> 1 countries home or recent US 6003020834693 6013516370183
#> gender age_min age_max api_call_time_utc
#> 1 1 or 2 18 65 2024-05-06 17:01:47
And and OR Categories
The function allows for specifying and
and
or
conditions; for example, identifying Facebook users that
are commuters and/or are frequent travelers. Vectors and lists are used
to distinguish between AND and OR conditions:
However, the following parameters can only except one input (a list or vector is not allowed).
location_unit_type
radius
radius_unit
Within parameter types
To specify AND or OR conditions for the same parameter type:
- Enter multiple parameter IDs within vectors c() to specify OR conditions
- Enter multiple parameter IDs within lists list() to specify AND conditions
beh_freqtrvl_id <- behaviors_df %>% filter(name == "Frequent travellers") %>% pull(id)
beh_comm_id <- behaviors_df %>% filter(name == "Commuters") %>% pull(id)
beh_sb_id <- behaviors_df %>% filter(name == "Small business owners") %>% pull(id)
# Users who are: Commuters or Travelers
query_fb_marketing_api(location_unit_type = "countries",
location_keys = "US",
behaviors = c(beh_comm_id, beh_freqtrvl_id),
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN)
#> estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound
#> 1 110796644 116200000 136700000
#> location_unit_type location_types location_keys
#> 1 countries home or recent US
#> behaviors gender age_min age_max api_call_time_utc
#> 1 6013516370183 or 6002714895372 1 or 2 18 65 2024-05-06 17:01:48
# Users who are: Commuters and Travelers
query_fb_marketing_api(location_unit_type = "countries",
location_keys = "US",
behaviors = list(beh_comm_id, beh_freqtrvl_id),
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN)
#> estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound
#> 1 20053536 20600000 24200000
#> location_unit_type location_types location_keys
#> 1 countries home or recent US
#> behaviors gender age_min age_max api_call_time_utc
#> 1 6013516370183 and 6002714895372 1 or 2 18 65 2024-05-06 17:01:48
# Users who are (Commuters or Small Business Owners) and Travelers
query_fb_marketing_api(location_unit_type = "countries",
location_keys = "US",
behaviors = list(c(beh_comm_id,
beh_sb_id),
beh_freqtrvl_id),
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN)
#> estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound
#> 1 23764960 24200000 28500000
#> location_unit_type location_types location_keys
#> 1 countries home or recent US
#> behaviors gender age_min age_max
#> 1 (6013516370183 or 6002714898572) and 6002714895372 1 or 2 18 65
#> api_call_time_utc
#> 1 2024-05-06 17:01:49
Across parameter types: Flexible Targeting
Flexible tageting, using the flex_target
parameter,
allows for more complicated parameter specification—including AND
conditions across parameter types (eg, behavior X AND interest Y). The
input for flex_target
follows the following logic:
-
flex_target
uses named lists to specify the (1) parameter type and (2) parameter ID - All parameters within the same list index are grouped using an OR condition
- All parameter separated across list indices are spearated by an AND condition
The below shows examples using dummy IDs
Example 1: OR Condition The below shows an example setting an OR condition for interest ID 2 and behavior ID 2. Both interest:1 and behavior:2 are in the same list index, so are grouped using an OR condition (interests:1 OR behavior 2)
flex_param <- list("interests" = 1, "behaviors" = 2)
Example 2: AND Condition The below shows an example setting an AND condition for interest ID 2 and behavior ID 2. interest:1 and behavior:2 are separated across list indices, so are separated by an AND condition (interests:1 AND behavior:2)
flex_param <- list(list("interests" = 1), list("behaviors" = 2))
Example 3: OR and AND Conditions The below shows a
more complicated example, which grabs all users that meet (EITHER
interests:1 or behaviors:3) AND (behaviors:2). Everything within
flex_param[[1]]
are grouped within OR conditions, but
different indices (flex_param[[1]]
and
flex_param[[2]]
) are separated by AND conditions.
flex_param <- list(list("interests" = 1, "behaviors" = 3), list("behaviors" = 2))
Example 4: OR and AND Conditions The below shows a
more complicated example, which grabs all users that meet (EITHER
interests:1 or behaviors:3) AND (EITHER behaviors:2 or behaviors:4).
Everything within flex_param[[1]]
are grouped within OR
conditions, but different indices (flex_param[[1]]
and
flex_param[[2]]
) are separated by AND conditions.
flex_param <- list(list("interests" = 1, "behaviors" = 3), list("behaviors" = c(2,4)))
int_music_id <- interests_df %>% filter(name == "Music (entertainment & media)") %>% pull(id)
beh_comm_id <- behaviors_df %>% filter(name == "Commuters") %>% pull(id)
## OR CONDITION
query_fb_marketing_api(location_unit_type = "countries",
location_keys = "US",
flex_target = list("interests" = int_music_id,
"behaviors" = beh_comm_id),
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN)
#> estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound
#> 1 191099644 184300000 216800000
#> location_unit_type location_types location_keys gender age_min age_max
#> 1 countries home or recent US 1 or 2 18 65
#> flex_target api_call_time_utc
#> 1 (interests:6003020834693 or behaviors:6013516370183) 2024-05-06 17:01:50
## AND CONDITION
query_fb_marketing_api(location_unit_type = "countries",
location_keys = "US",
flex_target = list(list("interests" = int_music_id),
list("behaviors" = beh_comm_id)),
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN)
#> estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound
#> 1 18508523 17400000 20500000
#> location_unit_type location_types location_keys gender age_min age_max
#> 1 countries home or recent US 1 or 2 18 65
#> flex_target api_call_time_utc
#> 1 interests:6003020834693 and behaviors:6013516370183 2024-05-06 17:01:50
## AND and OR CONDITION
query_fb_marketing_api(location_unit_type = "countries",
location_keys = "US",
flex_target = list(list("interests" = int_music_id),
list("behaviors" = c(beh_comm_id, beh_freqtrvl_id))),
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN)
#> estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound
#> 1 95506433 90000000 105900000
#> location_unit_type location_types location_keys gender age_min age_max
#> 1 countries home or recent US 1 or 2 18 65
#> flex_target
#> 1 interests:6003020834693 and (behaviors:6013516370183 or behaviors:6002714895372)
#> api_call_time_utc
#> 1 2024-05-06 17:01:51
Excluding Categories
Many parameters come with an alternate input that starts with
excl_
to exclude types of users. For example, there are
both behaviors
and interests
parameters, as
well as excl_behaviors
and excl_interests
parameters. The below code shows an example querying users who likely
commute to work and are not tagged as interested in music.
beh_comm_id <- behaviors_df %>% filter(name == "Commuters") %>% pull(id)
int_music_id <- interests_df %>% filter(name == "Music (entertainment & media)") %>% pull(id)
# Like to commute
query_fb_marketing_api(location_unit_type = "countries",
location_keys = "US",
behaviors = beh_comm_id,
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN)
#> estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound
#> 1 20968885 22000000 25900000
#> location_unit_type location_types location_keys behaviors gender age_min
#> 1 countries home or recent US 6013516370183 1 or 2 18
#> age_max api_call_time_utc
#> 1 65 2024-05-06 17:01:52
# Likely commute to work AND NOT interested in music in US
query_fb_marketing_api(location_unit_type = "countries",
location_keys = "US",
behaviors = beh_comm_id,
excl_interests = int_music_id,
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN)
#> estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound
#> 1 2347682 4700000 5600000
#> location_unit_type location_types location_keys behaviors excl_interests
#> 1 countries home or recent US 6013516370183 6003020834693
#> gender age_min age_max api_call_time_utc
#> 1 1 or 2 18 65 2024-05-06 17:01:54
Multiple Queries
The function allows making multiple queries within one function call.
All parameters in the map_param
function will be iterated
as separate calls. For example, when
location_unit_type = "countries"
,
location_key = map_param("US", "MX")
will make one query
for the US, and a second query for Mexico. The map_param
functions creates an object of the class map_param
, which
instructs the query_fb_marketing_api()
to make separate
queries for different items in map_param
.
Below shows examples. Assume hat we are using map_param
to create separate queries for interests, for interest ID 1
and 2
.
Example 1: Simple example, making one query to
determining the number of users with an interest in 1
, and
a separate query to determine the number of users with an interest in
2
.
map_param(1, 2)
#> [[1]]
#> [1] 1
#>
#> [[2]]
#> [1] 2
#>
#> attr(,"class")
#> [1] "map_param"
Example 2: Note that below will only make one query,
querying users with an interest in 1 OR 2. There is only one item:
c(1,2)
– which the function interprets using an
OR
condition.
interests_vec <- c(1, 2)
map_param(interests_vec)
#> [[1]]
#> [1] 1 2
#>
#> attr(,"class")
#> [1] "map_param"
Example 3: To map over a vector, we can use the
map_param_vec()
function—which creates a separate query for
each item in the vector.
interests_vec <- c(1, 2)
map_param_vec(interests_vec)
#> [1] 1 2
#> attr(,"class")
#> [1] "map_param"
Simple Examples
Below we show simple examples using map_param
.
## Number of Users in US or Mexico, as separate queries
df_out <- query_fb_marketing_api(location_unit_type = "countries",
location_key = map_param("US", "MX"),
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN)
df_out %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
estimate_dau | estimate_mau_lower_bound | estimate_mau_upper_bound | location_unit_type | location_types | location_keys | gender | age_min | age_max | api_call_time_utc |
---|---|---|---|---|---|---|---|---|---|
219374690 | 234900000 | 276400000 | countries | home or recent | US | 1 or 2 | 18 | 65 | 2024-05-06 17:01:55 |
88830897 | 95600000 | 112400000 | countries | home or recent | MX | 1 or 2 | 18 | 65 | 2024-05-06 17:01:56 |
## Same query as above, but using a pre-defined vector of countries
# Because we use a vector, we need to use map_param_vec instead of map_param
countries_vec <- c("US", "MX")
df_out <- query_fb_marketing_api(location_unit_type = "countries",
location_key = map_param_vec(countries_vec),
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN)
df_out %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
estimate_dau | estimate_mau_lower_bound | estimate_mau_upper_bound | location_unit_type | location_types | location_keys | gender | age_min | age_max | api_call_time_utc |
---|---|---|---|---|---|---|---|---|---|
219374690 | 234900000 | 276400000 | countries | home or recent | US | 1 or 2 | 18 | 65 | 2024-05-06 17:01:57 |
88830897 | 95600000 | 112400000 | countries | home or recent | MX | 1 or 2 | 18 | 65 | 2024-05-06 17:01:57 |
## Iterate across countries and across behaviors. Use `NA` for not filtering by behavior. The below call will give users for (1) all US, (2) all Mexico, (3) frequent travelers in US, and (4) frequenty travelers in Mexico.
df_out <- query_fb_marketing_api(location_unit_type = "countries",
location_key = map_param("US", "MX"),
behaviors = map_param(NA, beh_freqtrvl_id),
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN)
df_out %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
estimate_dau | estimate_mau_lower_bound | estimate_mau_upper_bound | location_unit_type | location_types | location_keys | gender | age_min | age_max | api_call_time_utc | behaviors |
---|---|---|---|---|---|---|---|---|---|---|
219374690 | 234900000 | 276400000 | countries | home or recent | US | 1 or 2 | 18 | 65 | 2024-05-06 17:01:57 | NA |
88830897 | 95600000 | 112400000 | countries | home or recent | MX | 1 or 2 | 18 | 65 | 2024-05-06 17:01:58 | NA |
110149161 | 115100000 | 135400000 | countries | home or recent | US | 1 or 2 | 18 | 65 | 2024-05-06 17:01:59 | 6002714895372 |
66342947 | 67800000 | 79700000 | countries | home or recent | MX | 1 or 2 | 18 | 65 | 2024-05-06 17:02:00 | 6002714895372 |
## Separate query for number of users in US and Mexico and commuters and frequent travelers. Parameters not in
## map_param are applied across all queries.
beh_comm_id <- behaviors_df %>% filter(name == "Commuters") %>% pull(id)
beh_freqtrvl_id <- behaviors_df %>% filter(name == "Frequent Travelers") %>% pull(id)
beh_sb_id <- behaviors_df %>% filter(name == "Small business owners") %>% pull(id)
int_music_id <- interests_df %>% filter(name == "Music (entertainment & media)") %>% pull(id)
df_out <- query_fb_marketing_api(location_unit_type = "countries",
location_key = map_param("US", "MX"),
behaviors = map_param(beh_comm_id, beh_freqtrvl_id),
interests = int_music_id,
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN)
df_out %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
estimate_dau | estimate_mau_lower_bound | estimate_mau_upper_bound | location_unit_type | location_types | location_keys | interests | behaviors | gender | age_min | age_max | api_call_time_utc |
---|---|---|---|---|---|---|---|---|---|---|---|
18508523 | 17400000 | 20500000 | countries | home or recent | US | 6003020834693 | 6013516370183 | 1 or 2 | 18 | 65 | 2024-05-06 17:02:01 |
10274875 | 9700000 | 11400000 | countries | home or recent | MX | 6003020834693 | 6013516370183 | 1 or 2 | 18 | 65 | 2024-05-06 17:02:01 |
187777990 | 178600000 | 210100000 | countries | home or recent | US | 6003020834693 | NA | 1 or 2 | 18 | 65 | 2024-05-06 17:02:02 |
78563650 | 74900000 | 88100000 | countries | home or recent | MX | 6003020834693 | NA | 1 or 2 | 18 | 65 | 2024-05-06 17:02:02 |
And/Or Conditions
And/or conditions work as before: vectors c()
specify OR
conditions, while lists list()
specify and conditions.
beh_freqtrvl_id <- behaviors_df %>% filter(name == "Frequent travellers") %>% pull(id)
beh_comm_id <- behaviors_df %>% filter(name == "Commuters") %>% pull(id)
beh_sb_id <- behaviors_df %>% filter(name == "Small business owners") %>% pull(id)
df_out <- query_fb_marketing_api(
location_unit_type = "countries",
location_key = "US",
behaviors = map_param(
# Commuters
beh_comm_id,
# Frequent Travelers
beh_freqtrvl_id,
# Commuters OR Frequent Travelers
c(beh_comm_id, beh_freqtrvl_id),
# Commuters AND Frequent Travelers
list(beh_comm_id, beh_freqtrvl_id),
# Commuters AND (Frequent Travelers OR Small Business Owners)
list(beh_comm_id, c(beh_freqtrvl_id, beh_sb_id))
),
version = VERSION,
creation_act = CREATION_ACT,
token = TOKEN)
df_out %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
estimate_dau | estimate_mau_lower_bound | estimate_mau_upper_bound | location_unit_type | location_types | location_keys | behaviors | gender | age_min | age_max | api_call_time_utc |
---|---|---|---|---|---|---|---|---|---|---|
20968885 | 22000000 | 25900000 | countries | home or recent | US | 6013516370183 | 1 or 2 | 18 | 65 | 2024-05-06 17:02:03 |
110149161 | 115100000 | 135400000 | countries | home or recent | US | 6002714895372 | 1 or 2 | 18 | 65 | 2024-05-06 17:02:04 |
110796644 | 116200000 | 136700000 | countries | home or recent | US | 6013516370183 or 6002714895372 | 1 or 2 | 18 | 65 | 2024-05-06 17:02:05 |
20053536 | 20600000 | 24200000 | countries | home or recent | US | 6013516370183 and 6002714895372 | 1 or 2 | 18 | 65 | 2024-05-06 17:02:05 |
20047486 | 20600000 | 24200000 | countries | home or recent | US | 6013516370183 and (6002714895372 or 6002714898572) | 1 or 2 | 18 | 65 | 2024-05-06 17:02:06 |