Skip to contents

Setup

First, we load relevant packages and create variables for our Facebook API keys.

## Load packages
library(rsocialwatcher)
library(tidyverse)
library(dplyr)
library(purrr)
library(lubridate)
library(jsonlite)
library(httr)
library(stringr)
library(knitr)
library(kableExtra)
library(leaflet)
library(sf)

## Set Facebook Keys
TOKEN        <- "TOKEN-HERE"
CREATION_ACT <- "CREATION-ACT-HERE"
VERSION      <- "VERSION-HERE"

The rsocialwatcher package provides the following functions:

  • get_fb_parameter_ids(): To obtain IDs for targeting users by different characteristics, including (1) different parameter types (eg, behaviors and interests) and (2) location keys (eg, city keys)
  • get_location_coords(): To obtain coordinates and, when available, geometries of locations based on their location keys.
  • query_fb_marketing_api(): Query daily and monthly active users, querying users for specific locations and by specific types.
  • get_fb_suggested_radius(): Determine a suggested radius to reach enough people for a given coordinate pair.

Querying Parameter IDs

The get_fb_parameter_ids function facilitates querying IDs to target specific types of users (e.g., users with specific interests) and to target users in specific locations (eg, countries, cities, etc).

User Type IDs

Targeting specific types of users can be done along a number of categories, including by users’ interests, behaviors, job, etc. Using the get_fb_parameter_ids function, the type parameter is used to query IDs for different types of categories. The type parameter allows for the following inputs:

  • behaviors
  • demographics
  • interests
  • income
  • industries
  • life_events
  • family_statuses
  • locales
  • work_positions
  • work_employers
  • education_statuses
  • relationship_statuses
  • education_majors
  • education_schools

IDs can then be used in the query_fb_marketing_api function, which queries daily and monthly active Facebook users. For each type input, there is a parameter in the query_fb_marketing_api function to include the ID for the specific type. For example, query_fb_marketing_api has a parameter for behaviors to put behavior IDs.

behaviors_df <- get_fb_parameter_ids(type    = "behaviors",
                                     version = VERSION, 
                                     token   = TOKEN)

behaviors_df %>% 
  kable() %>% 
  kable_styling() %>% 
  scroll_box(width = "100%",
             height = "300px")
id name type path description real_time_cluster audience_size_lower_bound audience_size_upper_bound
6002714895372 Frequent travellers behaviors Travel , Frequent travellers People whose activities on Facebook suggest that they are frequent travellers. FALSE 1647123246 1937016938
6002714898572 Small business owners behaviors Digital activities , Small business owners People who list themselves as small business owners or own small business Pages on Facebook FALSE 38766796 45589753
6002764392172 Facebook Payments users (90 days) behaviors Digital activities , Facebook Payments users (90 days) People who have used Facebook payments in the past 90 days FALSE 551812 648932
6003808923172 Early technology adopters behaviors Digital activities , Early technology adopters People who are likely to adopt new technologies earlier than others FALSE 107522889 126446918
6003986707172 Facebook access (OS): Windows 7 behaviors Digital activities , Operating system used , Facebook access (OS): Windows 7 People who primarily access Facebook using Windows 7. FALSE 22318 26246
6003966451572 Facebook access (OS): Mac OS X behaviors Digital activities , Operating system used , Facebook access (OS): Mac OS X People who primarily access Facebook using Mac OS X FALSE 2329374 2739344
6003966450972 Facebook access (OS): Windows Vista behaviors Digital activities , Operating system used , Facebook access (OS): Windows Vista People who primarily access Facebook using Windows Vista FALSE 1088 1280
6003966466972 Facebook access (OS): Windows XP behaviors Digital activities , Operating system used , Facebook access (OS): Windows XP People who primarily access Facebook using Windows XP FALSE 375 442
6004386303972 Facebook access (mobile): iPhone 4S behaviors Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPhone 4S People who primarily access Facebook using an iPhone 4S mobile device. FALSE 8513 10012
6004383941372 Facebook access (mobile): iPhone 4 behaviors Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPhone 4 People who primarily access Facebook using an iPhone 4 mobile device. FALSE 3536 4159
6004386044572 Facebook access (mobile): Android devices behaviors Mobile Device User , All Mobile Devices by Operating System , Facebook access (mobile): Android devices People who primarily access Facebook using any Android mobile device FALSE 1726538017 2030408708
6004383149972 Facebook access (mobile): feature phones behaviors Mobile Device User , Facebook access (mobile): feature phones People who primarily access Facebook using a feature phone FALSE 3676947 4324090
6004383890572 Facebook access (mobile): iPod Touch behaviors Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPod Touch People who primarily access Facebook using an iPod Touch mobile device FALSE 53426 62830
6004385895772 Facebook access (mobile): Windows phones behaviors Mobile Device User , All Mobile Devices by Operating System , Facebook access (mobile): Windows phones People who primarily access Facebook using a Windows mobile device FALSE 23256 27350
6004384041172 Facebook access (mobile): Apple (iOS) devices behaviors Mobile Device User , All Mobile Devices by Operating System , Facebook access (mobile): Apple (iOS) devices People who primarily access Facebook using an Apple (iOS) mobile device FALSE 319822462 376111216
6004383806772 Facebook access (mobile): iPad 3 behaviors Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPad 3 People who primarily access Facebook using an iPad 3 mobile device. FALSE 78640 92481
6004383808772 Facebook access (mobile): iPad 2 behaviors Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPad 2 People who primarily access Facebook using an iPad 2 mobile device FALSE 2308 2715
6004383767972 Facebook access (mobile): iPad 1 behaviors Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPad 1 People who primarily access Facebook using an iPad 1 mobile device FALSE 1050528 1235422
6004386010572 Facebook access (mobile): Samsung Android mobile devices behaviors Mobile Device User , All Mobile Devices by Brand , Facebook access (mobile): Samsung Android mobile devices People who primarily access Facebook using a Samsung Android mobile device FALSE 479386047 563757992
6004385886572 Facebook access (mobile): HTC Android mobile devices behaviors Mobile Device User , All Mobile Devices by Brand , Facebook access (mobile): HTC Android mobile devices People who primarily access Facebook using an HTC Android mobile device. FALSE 481419 566149
6004385868372 Facebook access(mobile): LG Android mobile devices behaviors Mobile Device User , All Mobile Devices by Brand , Facebook access(mobile): LG Android mobile devices People who primarily access Facebook using an LG Android mobile device FALSE 8361310 9832901
6004385865172 Facebook access (mobile): Sony Android mobile devices behaviors Mobile Device User , All Mobile Devices by Brand , Facebook access (mobile): Sony Android mobile devices People who primarily access Facebook using a Sony Android mobile device FALSE 3469573 4080218
6004382299972 Facebook access (mobile): all mobile devices behaviors Mobile Device User , Facebook access (mobile): all mobile devices People who primarily access Facebook using mobile devices FALSE 1835336736 2158356002
6004383049972 Facebook access (mobile): smartphones and tablets behaviors Mobile Device User , Facebook access (mobile): smartphones and tablets People who primarily access Facebook using a smartphone or tablet device FALSE 1902422238 2237248552
6004385879572 Facebook access (mobile): Motorola Android mobile devices behaviors Mobile Device User , All Mobile Devices by Brand , Facebook access (mobile): Motorola Android mobile devices People who primarily access Facebook using a Motorola Android mobile device FALSE 64609022 75980211
6004854404172 Facebook access: older devices and OS behaviors Digital activities , Facebook access: older devices and OS People who primarily access Facebook on older devices or operating systems before Windows 7, Mac OS X or Windows NT 6.2. FALSE 680678837 800478313
6004883585572 Facebook access (mobile): iPhone 5 behaviors Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPhone 5 People who primarily access Facebook using an iPhone 5 mobile device FALSE 45032 52958
6004948896972 Facebook Payments users (30 days) behaviors Digital activities , Facebook Payments users (30 days) People who have used Facebook Payments in the past 30 days FALSE 224301 263779
6006298077772 Facebook access (OS): Windows 8 behaviors Digital activities , Operating system used , Facebook access (OS): Windows 8 People who primarily access Facebook using Facebook using Windows 8 FALSE 29797 35042
6007078565383 New smartphone and tablet users behaviors Mobile Device User , New smartphone and tablet users People who are new smartphone or tablet users. FALSE 66962232 78747586
6007481031783 Owns: Galaxy S III devices behaviors Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy S III devices People who likely own a Galaxy S III mobile device FALSE 57835 68014
6007847947183 Console gamers behaviors Digital activities, Console gamers People who have liked Pages related to console gaming or gaming systems FALSE 48803738 57393196
6008261969983 Returned from travelling one week ago behaviors Travel , Returned from travelling one week ago People whose activities on Facebook suggest that they returned from travelling within the past week FALSE 134248774 157876559
6008297697383 Returned from travelling two weeks ago behaviors Travel , Returned from travelling two weeks ago People whose activities on Facebook suggest that they returned from travelling within the past 2 weeks FALSE 207718684 244277173
6008868254383 Owns: Kindle Fire behaviors Mobile Device User , All Mobile Devices by Brand, Amazon , Owns: Kindle Fire People who are likely to own a Kindle Fire FALSE 8701 10233
6010095777183 Facebook access (mobile): iPhone 5S behaviors Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPhone 5S People who primarily access Facebook using an iPhone 5S mobile device. FALSE 353159 415315
6010095794383 Facebook access (mobile): iPhone 5C behaviors Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPhone 5C People who primarily access Facebook using an iPhone 5C mobile device FALSE 19522 22959
6010231666183 Owns: LG G2 devices behaviors Mobile Device User , All Mobile Devices by Brand, LG , Owns: LG G2 devices People who are likely to own LG G2 devices FALSE 13947 16402
6011191254383 Owns: iPad 4 behaviors Mobile Device User , All Mobile Devices by Brand, Apple , Owns: iPad 4 People who are likely to own an iPad 4 FALSE 322857 379681
6011191259183 Owns: iPad Mini 1 behaviors Mobile Device User , All Mobile Devices by Brand, Apple , Owns: iPad Mini 1 People who are likely to own an iPad Mini 1 FALSE 178147 209502
6011244513583 Owns: iPad Air behaviors Mobile Device User , All Mobile Devices by Brand, Apple , Owns: iPad Air People who are likely to own an iPad Air. FALSE 843068 991449
6011244510983 Owns: iPad Mini 2 behaviors Mobile Device User , All Mobile Devices by Brand, Apple , Owns: iPad Mini 2 People who are likely to own an iPad Mini 2. FALSE 466277 548342
6011390261383 Owns: Huawei behaviors Mobile Device User , All Mobile Devices by Brand, Owns: Huawei People who are likely to own a Huawei mobile device. FALSE 57109294 67160530
6015852294783 Owns: Galaxy Y devices behaviors Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy Y devices People who are likely to own a Galaxy Y mobile device. FALSE 2386 2806
6013016790183 Owns: Galaxy S4 behaviors Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy S4 People who are likely to own a Galaxy S4 mobile device FALSE 167130 196545
6013017211983 Owns: Galaxy S III Mini behaviors Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy S III Mini People who are likely to own a Galaxy S III Mini mobile device FALSE 29620 34834
6013017235183 Galaxy Note II behaviors Mobile Device User , All Mobile Devices by Brand, Samsung , Galaxy Note II FALSE 2403 2826
6013017236583 Owns: Galaxy Grand behaviors Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy Grand People who are likely to own a Galaxy Grand mobile device FALSE 62313 73281
6013017297383 Curve 9220 behaviors Mobile Device User , All Mobile Devices by Brand, BlackBerry , Curve 9220 FALSE 188 222
6013017308783 Owns: Galaxy S 4 Mini behaviors Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy S 4 Mini People who are likely to own a Galaxy S 4 Mini mobile device. FALSE 20103 23642
6013279353983 Owns: Galaxy Note 3 behaviors Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy Note 3 People who are likely to own a Galaxy Note 3 mobile device. FALSE 216220 254275
6013516370183 Commuters behaviors Travel , Commuters People who likely commute from their home to their workplace on weekdays FALSE 301135354 354135177
6014808618583 Owns: Galaxy S5 behaviors Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy S5 People who are likely to own a Samsung Galaxy S5 mobile device FALSE 320046 376375
6014809400783 Owns: Nexus 5 behaviors Mobile Device User , All Mobile Devices by Brand, Google , Owns: Nexus 5 People who are likely to own a Nexus 5 mobile device. FALSE 218636 257116
6014809859183 Owns: HTC One behaviors Mobile Device User , All Mobile Devices by Brand, HTC , Owns: HTC One People who are likely to own an HTC One mobile device FALSE 100299 117952
6015235495383 Facebook access (network type): Wi-Fi behaviors Mobile Device User , Network Connection , Facebook access (network type): Wi-Fi People who primarily access Facebook using a Wi-Fi network. FALSE 979480774 1151869391
6015441244983 Owns: Galaxy Grand 2 behaviors Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy Grand 2 People who are likely to own a Samsung Galaxy Grand 2 mobile device FALSE 64236 75542
6015547847583 Facebook access (browser): Firefox behaviors Digital activities , Internet browser used , Facebook access (browser): Firefox People who primarily access Facebook using Firefox FALSE 12715828 14953814
6015547900583 Facebook access (browser): Chrome behaviors Digital activities , Internet browser used , Facebook access (browser): Chrome People who primarily access Facebook using Google Chrome. FALSE 274211097 322472251
6015559470583 Lives abroad behaviors Ex-pats , Lives abroad People living outside their home country FALSE 201652135 237142911
6015593608983 Facebook access (browser): Safari behaviors Digital activities , Internet browser used , Facebook access (browser): Safari People who primarily access Facebook using Safari FALSE 39145924 46035607
6015593652183 Facebook access (browser): Opera behaviors Digital activities , Internet browser used , Facebook access (browser): Opera People who primarily access Facebook using Opera FALSE 7603548 8941773
6015593776783 Facebook access (browser): Internet Explorer behaviors Digital activities , Internet browser used , Facebook access (browser): Internet Explorer People who primarily access Facebook using Internet Explorer FALSE 330398 388549
6015683810783 Facebook Page admins behaviors Digital activities , Facebook page admins, Facebook Page admins People who are an admin of at least one Page on Facebook. FALSE 553015092 650345749
6016286626383 Facebook access (mobile): tablets behaviors Mobile Device User , Facebook access (mobile): tablets People who primarily access Facebook using a tablet. FALSE 1682261446 1978339461
6016916298983 Lived in India (formerly Expats – India) behaviors Ex-pats , Lived in India (formerly Expats – India) People who used to live in India who now live abroad FALSE 13971504 16430489
6016925328983 Owns: Galaxy Tab S behaviors Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy Tab S People who are likely to own a Samsung Galaxy Tab S mobile device. FALSE 59821 70350
6016925394583 Owns: Galaxy Tab Pro behaviors Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy Tab Pro People who are likely to own a Samsung Galaxy Tab Pro mobile device. FALSE 10879 12794
6016925404783 Owns: Galaxy Tab 4 behaviors Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy Tab 4 People who are likely to own a Samsung Galaxy Tab 4 mobile device FALSE 245369 288555
6016925643983 Owns: Galaxy Tab 3 behaviors Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy Tab 3 People who are likely to own a Galaxy Tab 3 mobile device. FALSE 342591 402888
6016925657183 Owns: Galaxy Tab 2 behaviors Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy Tab 2 People who are likely to own a Galaxy Tab 2 mobile device FALSE 34091 40092
6016925667383 Galaxy Tab behaviors Mobile Device User , All Mobile Devices by Brand, Samsung , Galaxy Tab People who are likely to own a Samsung Galaxy Tab FALSE 238 281
6016926254583 Owns: Xperia M behaviors Mobile Device User , All Mobile Devices by Brand, Sony , Owns: Xperia M People who are likely to own a Sony Xperia M mobile device FALSE 2830 3329
6016926310383 Owns: Xperia SL behaviors Mobile Device User , All Mobile Devices by Brand, Sony , Owns: Xperia SL People who are likely to own a Sony Xperia SLs FALSE 275 324
6016926471583 Xperia T behaviors Mobile Device User , All Mobile Devices by Brand, Sony , Xperia T People who are likely to own a Sony Xperia T FALSE 325 383
6016926528983 Owns: Xperia Z behaviors Mobile Device User , All Mobile Devices by Brand, Sony , Owns: Xperia Z People who are likely to own a Sony Xperia Z mobile device FALSE 5346 6287
6016926651383 Owns: Xperia Z Ultra behaviors Mobile Device User , All Mobile Devices by Brand, Sony , Owns: Xperia Z Ultra People who are likely to own a Sony Xperia Z Ultra mobile device FALSE 1715 2017
6017253486583 Facebook access (network type): 2G behaviors Mobile Device User , Network Connection , Facebook access (network type): 2G People who primarily access Facebook using a 2G network. FALSE 7345473 8638277
6017253511583 Facebook access (network type): 3G behaviors Mobile Device User , Network Connection , Facebook access (network type): 3G People who primarily access Facebook using a 3G network. FALSE 90743383 106714219
6017253531383 Facebook access (network type): 4G behaviors Mobile Device User , Network Connection , Facebook access (network type): 4G People who primarily access Facebook using a 4G network FALSE 791357471 930636386
6017535283383 Owns: LG G3 behaviors Mobile Device User , All Mobile Devices by Brand, LG , Owns: LG G3 People who are likely to own an LG G3 mobile device FALSE 35312 41527
6017831560783 Owns: iPhone 6 Plus behaviors Mobile Device User , All Mobile Devices by Brand, Apple , Owns: iPhone 6 Plus People who are likely to own an Apple iPhone 6 Plus mobile device FALSE 1063623 1250821
6017831572183 Owns: iPhone 6 behaviors Mobile Device User , All Mobile Devices by Brand, Apple , Owns: iPhone 6 People who are likely to own an iPhone 6 mobile device FALSE 2195840 2582309
6018413514983 Anniversary (within 61-90 days) behaviors Anniversary , Anniversary (within 61-90 days) People with an anniversary in 61-90 days FALSE 7391487 8692389
6018796980983 Lived in Kenya (formerly Expats – Kenya) behaviors Ex-pats , Lived in Kenya (formerly Expats – Kenya) People who used to live in Kenya who now live abroad FALSE 1386561 1630596
6018797004183 Lived in Nigeria (formerly Expats – Nigeria) behaviors Ex-pats , Lived in Nigeria (formerly Expats – Nigeria) People who used to live in Nigeria who now live abroad FALSE 2482332 2919223
6018797036783 Lived in Cameroon (formerly Expats – Cameroon) behaviors Ex-pats , Lived in Cameroon (formerly Expats – Cameroon) People who used to live in Cameroon who now live abroad FALSE 481462 566200
6018797091183 Lived in Philippines (formerly Expats – Philippines) behaviors Ex-pats , Lived in Philippines (formerly Expats – Philippines) People who used to live in the Philippines who now live abroad FALSE 9472597 11139775
6018797127383 Lived in Cuba (formerly Expats – Cuba) behaviors Ex-pats , Lived in Cuba (formerly Expats – Cuba) People who used to live in Cuba who now live abroad FALSE 1798545 2115089
6018797165983 Lived in Ethiopia (formerly Expats – Ethiopia) behaviors Ex-pats , Lived in Ethiopia (formerly Expats – Ethiopia) People who used to live in Ethiopia who now live abroad FALSE 985661 1159138
6018797373783 Lived in Haiti (formerly Expats – Haiti) behaviors Ex-pats , Lived in Haiti (formerly Expats – Haiti) People who used to live in Haiti who now live abroad FALSE 1474987 1734585
6018995113183 Owns: iPad Air 2 behaviors Mobile Device User , All Mobile Devices by Brand, Apple , Owns: iPad Air 2 People who are likely to own an iPad Air 2 mobile device FALSE 1485676 1747156
6019221024783 Played Canvas games (yesterday) behaviors Digital activities , Canvas gaming , Played Canvas games (yesterday) People who played a Canvas game yesterday. FALSE 1798290 2114790
6019221038183 Played Canvas games (last 7 days) behaviors Digital activities , Canvas gaming , Played Canvas games (last 7 days) People who played a Canvas game in the last 7 days. FALSE 2693022 3166994
6019221046583 Played Canvas games (last 14 days) behaviors Digital activities , Canvas gaming , Played Canvas games (last 14 days) People who played a Canvas game in the last 14 days. FALSE 3127062 3677426
6019098117583 Owns: iPad Mini 3 behaviors Mobile Device User , All Mobile Devices by Brand, Apple , Owns: iPad Mini 3 People who are likely to own an iPad Mini 3 mobile device. FALSE 98511 115849
6019098214783 Owns: Galaxy Note 4 behaviors Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy Note 4 People who are likely to own a Galaxy Note 4 mobile device. FALSE 175571 206472
6019164544783 Owns: Karbonn behaviors Mobile Device User , All Mobile Devices by Brand, Owns: Karbonn People who are likely to own a Karbonn mobile device. FALSE 54010 63516
6019164586183 Owns: Micromax behaviors Mobile Device User , All Mobile Devices by Brand, Owns: Micromax People who are likely to own a Micromax mobile device FALSE 300462 353344
6019164630583 Owns: Xiaomi behaviors Mobile Device User , All Mobile Devices by Brand, Owns: Xiaomi People who are likely to own a Xiaomi mobile device. FALSE 15062213 17713163
6019246164583 Played Canvas games (last 3 days) behaviors Digital activities , Canvas gaming , Played Canvas games (last 3 days) People who played a Canvas game in the last 3 days FALSE 2292640 2696145
6019366943583 Lived in Spain (formerly Expats – Spain) behaviors Ex-pats , Lived in Spain (formerly Expats – Spain) People who used to live in Spain who now live abroad FALSE 1632858 1920242
6019367014383 Lived in France (formerly Ex-pats – France) behaviors Ex-pats , Lived in France (formerly Ex-pats – France) People who used to live in France who now live abroad FALSE 2963593 3485186
6019367052983 Lived in Germany (formerly Ex-pats – Germany) behaviors Ex-pats , Lived in Germany (formerly Ex-pats – Germany) People who used to live in Germany who now live abroad FALSE 1535034 1805201
6019377644783 Lived in Switzerland (formerly Ex-pats – Switzerland) behaviors Ex-pats , Lived in Switzerland (formerly Ex-pats – Switzerland) People who used to live in Switzerland who now live abroad FALSE 300822 353767
6019396649183 Lived in the United States (formerly Ex-pats – United States) behaviors Ex-pats , Lived in the United States (formerly Ex-pats – United States) People who used to live in the United States who now live abroad FALSE 16864520 19832676
6019396657183 Lived in Poland (formerly Ex-pats – Poland) behaviors Ex-pats , Lived in Poland (formerly Ex-pats – Poland) People who used to live in Poland who now live abroad FALSE 1413694 1662505
6019396654583 Lived in Italy (formerly Ex-pats – Italy) behaviors Ex-pats , Lived in Italy (formerly Ex-pats – Italy) People who used to live in Italy who now live abroad FALSE 1724471 2027978
6019396650783 Lived in Ireland (formerly Ex-pats – Ireland) behaviors Ex-pats , Lived in Ireland (formerly Ex-pats – Ireland) People who used to live in Ireland who now live abroad FALSE 284070 334067
6019396638383 Lived in Hungary (formerly Ex-pats – Hungary) behaviors Ex-pats , Lived in Hungary (formerly Ex-pats – Hungary) People who used to live in Hungary who now live abroad FALSE 335965 395095
6019396764183 Lived in Canada (formerly Expats – Canada) behaviors Ex-pats , Lived in Canada (formerly Expats – Canada) People who used to live in Canada who now live abroad FALSE 1300278 1529128
6019452369983 Lived in China (formerly Ex-pats – China) behaviors Ex-pats , Lived in China (formerly Ex-pats – China) People who used to live in China who now live abroad FALSE 2099995 2469595
6019520122583 Lived in Puerto Rico (formerly Ex-pats – Puerto Rico) behaviors Ex-pats , Lived in Puerto Rico (formerly Ex-pats – Puerto Rico) People who used to live in Puerto Rico who now live abroad FALSE 1135306 1335121
6019564340583 Lived in Brazil (formerly Ex-pats – Brazil) behaviors Ex-pats , Lived in Brazil (formerly Ex-pats – Brazil) People who used to live in Brazil who now live abroad FALSE 4013738 4720156
6019564344583 Lived in Indonesia (formerly Ex-pats – Indonesia) behaviors Ex-pats , Lived in Indonesia (formerly Ex-pats – Indonesia) People who used to live in Indonesia who now live abroad FALSE 4262948 5013227
6019564383383 Lived in South Africa (formerly Expats – South Africa) behaviors Ex-pats , Lived in South Africa (formerly Expats – South Africa) People who used to live in South Africa who now live abroad FALSE 1268147 1491341
6019673233983 Lived in Zimbabwe (formerly Ex-pats – Zimbabwe) behaviors Ex-pats , Lived in Zimbabwe (formerly Ex-pats – Zimbabwe) People who used to live in Zimbabwe who now live abroad FALSE 883955 1039532
6019673448383 Lived in Ghana (formerly Ex-pats – Ghana) behaviors Ex-pats , Lived in Ghana (formerly Ex-pats – Ghana) People who used to live in Ghana who now live abroad FALSE 744976 876092
6019673501783 Lived in Uganda (formerly Ex-pats – Uganda) behaviors Ex-pats , Lived in Uganda (formerly Ex-pats – Uganda) People who used to live in Uganda who now live abroad FALSE 624515 734430
6019673525983 Lived in Colombia (formerly Ex-pats – Colombia) behaviors Ex-pats , Lived in Colombia (formerly Ex-pats – Colombia) People who used to live in Colombia who now live abroad FALSE 2916567 3429883
6019673762183 Lived in Dominican Republic (formerly Ex-pats – Dominican Republic) behaviors Ex-pats , Lived in Dominican Republic (formerly Ex-pats – Dominican Republic) People who used to live in the Dominican Republic who now live abroad FALSE 1407819 1655596
6019673777983 Lived in El Salvador (formerly Expats – El Salvador) behaviors Ex-pats , Lived in El Salvador (formerly Expats – El Salvador) People who used to live in El Salvador who now live abroad FALSE 1473986 1733408
6019673808383 Lived in Guatemala (formerly Ex-pats – Guatemala) behaviors Ex-pats , Lived in Guatemala (formerly Ex-pats – Guatemala) People who used to live in Guatemala who now live abroad FALSE 2197619 2584400
6020530139383 Travel and tourism Page admins behaviors Digital activities , Facebook page admins , Travel and tourism Page admins People who are an admin of a travel and tourism Page on Facebook FALSE 19220526 22603339
6020530156983 Sport Page admins behaviors Digital activities , Facebook page admins, Sport Page admins People who are an admin of a sport Page on Facebook FALSE 7902853 9293756
6020530250383 Retail Page admins behaviors Digital activities , Facebook page admins, Retail Page admins People who are an admin of a retail Page on Facebook FALSE 11305724 13295532
6020568271383 Health and beauty Page admins behaviors Digital activities , Facebook page admins , Health and beauty Page admins People who are an admin of a health and beauty Page on Facebook FALSE 18209101 21413903
6020530269183 Food and restaurant Page admins behaviors Digital activities , Facebook page admins , Food and restaurant Page admins People who are an admin of a food and restaurant Page on Facebook FALSE 2089404 2457140
6020530280983 Community and club Page admins behaviors Digital activities , Facebook page admins , Community and club Page admins People who are an admin of a community and club Page on Facebook FALSE 15595613 18340442
6020530281783 Business Page admins behaviors Digital activities , Facebook page admins, Business Page admins People who are an admin of a business Page on Facebook FALSE 40704944 47869015
6021354152983 Lived in the UK (formerly Ex-pats – UK) behaviors Ex-pats , Lived in the UK (formerly Ex-pats – UK) People who used to live in the United Kingdom who now live abroad FALSE 4892666 5753776
6021354857783 Lived in Australia (formerly Ex-pats – Australia) behaviors Ex-pats , Lived in Australia (formerly Ex-pats – Australia) People who used to live in Australia who now live abroad FALSE 1339954 1575786
6021354882783 Lived in Portugal (formerly Ex-pats – Portugal) behaviors Ex-pats , Lived in Portugal (formerly Ex-pats – Portugal) People who used to live in Portugal who now live abroad FALSE 1003757 1180419
6022430911783 Owns: Xperia Z3 behaviors Mobile Device User , All Mobile Devices by Brand, Sony , Owns: Xperia Z3 People who are likely to own a Sony Xperia Z3 FALSE 14199 16699
6022788483583 Frequent international travellers behaviors Travel , Frequent international travellers People who have travelled abroad more than once in the past 6 months. FALSE 644113401 757477360
6023287351383 Lived in Estonia (formerly Expats – Estonia) behaviors Ex-pats , Lived in Estonia (formerly Expats – Estonia) People who used to live in Estonia who now live abroad FALSE 80339 94479
6023287459983 Lived in Norway (formerly Ex-pats – Norway) behaviors Ex-pats , Lived in Norway (formerly Ex-pats – Norway) People who used to live in Norway who now live abroad FALSE 180323 212061
6023287455983 Lived in Denmark (formerly Ex-pats – Denmark) behaviors Ex-pats , Lived in Denmark (formerly Ex-pats – Denmark) People who used to live in Denmark who now live abroad FALSE 124342 146227
6023287438783 Lived in Czech Republic (formerly Ex-pats – Czech Republic) behaviors Ex-pats , Lived in Czech Republic (formerly Ex-pats – Czech Republic) People who used to live in the Czech Republic who now live abroad FALSE 205344 241485
6023287397383 Lived in Sweden (formerly Expats – Sweden) behaviors Ex-pats , Lived in Sweden (formerly Expats – Sweden) People who used to live in Sweden who now live abroad FALSE 267919 315073
6023287393783 Lived in the Netherlands (formerly Ex-pats – the Netherlands) behaviors Ex-pats , Lived in the Netherlands (formerly Ex-pats – the Netherlands) People who used to live in the Netherlands who now live abroad FALSE 439177 516473
6023356562783 Lived in Bangladesh (formerly Ex-pats – Bangladesh) behaviors Ex-pats , Lived in Bangladesh (formerly Ex-pats – Bangladesh) People who used to live in Bangladesh who now live abroad FALSE 6100326 7173984
6023356926183 Lived in Tanzania (formerly Expats – Tanzania) behaviors Ex-pats , Lived in Tanzania (formerly Expats – Tanzania) People who used to live in Tanzania who now live abroad FALSE 464745 546541
6023356955383 Lived in Nepal (formerly Ex-pats – Nepal) behaviors Ex-pats , Lived in Nepal (formerly Ex-pats – Nepal) People who used to live in Nepal who now live abroad FALSE 3473994 4085417
6023356956983 Lived in Jamaica (formerly Ex-pats – Jamaica) behaviors Ex-pats , Lived in Jamaica (formerly Ex-pats – Jamaica) People who used to live in Jamaica who now live abroad FALSE 691965 813752
6023356966183 Lived in Thailand (formerly Ex-pats – Thailand) behaviors Ex-pats , Lived in Thailand (formerly Ex-pats – Thailand) People who used to live in Thailand who now live abroad FALSE 1711204 2012377
6023356986383 Lived in Sierra Leone (formerly Expats – Sierra Leone) behaviors Ex-pats , Lived in Sierra Leone (formerly Expats – Sierra Leone) People who used to live in Sierra Leone who now live abroad FALSE 212931 250407
6023357000583 Lived in Senegal (formerly Ex-pats – Senegal) behaviors Ex-pats , Lived in Senegal (formerly Ex-pats – Senegal) People who used to live in Senegal who now live abroad FALSE 456789 537184
6023422105983 Lived in Côte d’Ivoire (formerly Ex-pats – Ivory Coast) behaviors Ex-pats , Lived in Côte d’Ivoire (formerly Ex-pats – Ivory Coast) People who used to live in Côte d’Ivoire who now live abroad FALSE 571107 671622
6023460563383 Owns: Alcatel behaviors Mobile Device User , All Mobile Devices by Brand, Owns: Alcatel People who are likely to own an Alcatel mobile device FALSE 2882607 3389947
6023460572383 Owns: ZTE behaviors Mobile Device User , All Mobile Devices by Brand, Owns: ZTE People who are likely to own a ZTE mobile device FALSE 7928835 9324311
6023460579583 Owns: Tecno behaviors Mobile Device User , All Mobile Devices by Brand, Owns: Tecno People who are likely to own a Tecno mobile device. FALSE 74934710 88123220
6023460590583 Owns: Cherry Mobile behaviors Mobile Device User , All Mobile Devices by Brand, Owns: Cherry Mobile People who are likely to own a Cherry mobile device. FALSE 108499 127595
6023516315983 Lived in Sri Lanka (formerly Ex-pats – Sri Lanka) behaviors Ex-pats , Lived in Sri Lanka (formerly Ex-pats – Sri Lanka) People who used to live in Sri Lanka who now live abroad FALSE 1031784 1213379
6023516338783 Lived in Morocco (formerly Ex-pats – Morocco) behaviors Ex-pats , Lived in Morocco (formerly Ex-pats – Morocco) People who used to live in Morocco who now live abroad FALSE 1992982 2343748
6023516430783 Lived in UAE (formerly Ex-pats – UAE) behaviors Ex-pats , Lived in UAE (formerly Ex-pats – UAE) People who used to live in the United Arab Emirates who now live abroad FALSE 1550009 1822811
6023516368383 Lived in New Zealand (formerly Ex-pats – New Zealand) behaviors Ex-pats , Lived in New Zealand (formerly Ex-pats – New Zealand) People who used to live in New Zealand who now live abroad FALSE 1332069 1566514
6023516373983 Lived in DR Congo (formerly Ex-pats – DR Congo) behaviors Ex-pats , Lived in DR Congo (formerly Ex-pats – DR Congo) People who used to live in the Democratic Republic of the Congo who now live abroad FALSE 2174757 2557515
6023516403783 Lived in Singapore (formerly Ex-pats – Singapore) behaviors Ex-pats , Lived in Singapore (formerly Ex-pats – Singapore) People who used to live in Singapore who now live abroad FALSE 85151 100138
6023620475783 Lived in the United States (formerly Ex-pats – United States) behaviors Ex-pats , Lived in the United States (formerly Ex-pats – United States) People who used to live in the United States who now live abroad FALSE 16863766 19831789
6023675997383 Lived in Austria (formerly Ex-pats – Austria) behaviors Ex-pats , Lived in Austria (formerly Ex-pats – Austria) People who used to live in Austria who now live abroad FALSE 142829 167967
6023676002183 Lived in Cyprus (formerly Ex-pats – Cyprus) behaviors Ex-pats , Lived in Cyprus (formerly Ex-pats – Cyprus) People who used to live in Cyprus who now live abroad FALSE 86221 101397
6068209522983 Lived in Finland (formerly Expats – Finland) behaviors Ex-pats , Lived in Finland (formerly Expats – Finland) People who used to live in Finland who now live abroad FALSE 108393 127471
6023676017583 Lived in Greece (formerly Ex-pats – Greece) behaviors Ex-pats , Lived in Greece (formerly Ex-pats – Greece) People who used to live in Greece who now live abroad FALSE 5742 6753
6023676022783 Lived in Hong Kong (formerly Ex-pats – Hong Kong) behaviors Ex-pats , Lived in Hong Kong (formerly Ex-pats – Hong Kong) People who used to live in Hong Kong who now live abroad FALSE 725337 852997
6023676028783 Lived in Japan (formerly Ex-pats – Japan) behaviors Ex-pats , Lived in Japan (formerly Ex-pats – Japan) People who used to live in Japan who now live abroad FALSE 1572051 1848733
6068613839383 Lived in Latvia (formerly Expats – Latvia) behaviors Ex-pats , Lived in Latvia (formerly Expats – Latvia) People who used to live in Latvia who now live abroad FALSE 151292 177920
6023676039183 Lived in Lithuania (formerly Ex-pats – Lithuania) behaviors Ex-pats , Lived in Lithuania (formerly Ex-pats – Lithuania) People who used to live in Lithuania who now live abroad FALSE 240238 282521
6023676044383 Lived in Luxembourg (formerly Ex-pats – Luxembourg) behaviors Ex-pats , Lived in Luxembourg (formerly Ex-pats – Luxembourg) People who used to live in Luxembourg who now live abroad FALSE 31769 37361
6023676045583 Lived in Malta (formerly Expats – Malta) behaviors Ex-pats , Lived in Malta (formerly Expats – Malta) People who used to live in Malta who now live abroad FALSE 35680 41960
6023676048183 Lived in Monaco (formerly Ex-pats – Monaco) behaviors Ex-pats , Lived in Monaco (formerly Ex-pats – Monaco) People who used to live in Monaco who now live abroad FALSE 25096 29514
6023676055383 Lived in Slovakia (formerly Ex-pats – Slovakia) behaviors Ex-pats , Lived in Slovakia (formerly Ex-pats – Slovakia) People who used to live in Slovakia who now live abroad FALSE 243781 286687
6023676060183 Lived in Slovenia (formerly Ex-pats – Slovenia) behaviors Ex-pats , Lived in Slovenia (formerly Ex-pats – Slovenia) People who used to live in Slovenia who now live abroad FALSE 61229 72006
6023676072183 Lived in Mexico (formerly Ex-pats – Mexico) behaviors Ex-pats , Lived in Mexico (formerly Ex-pats – Mexico) People who used to live in Mexico who now live abroad FALSE 11883433 13974918
6025000826583 Lived in Argentina (formerly Expats – Argentina) behaviors Ex-pats , Lived in Argentina (formerly Expats – Argentina) People who used to live in Argentina who now live abroad FALSE 1268125 1491315
6025000823583 Lived in Israel (formerly Ex-pats – Israel) behaviors Ex-pats , Lived in Israel (formerly Ex-pats – Israel) People who used to live in Israel who now live abroad FALSE 544188 639966
6025000815983 Lived in Russia (formerly Ex-pats – Russia) behaviors Ex-pats , Lived in Russia (formerly Ex-pats – Russia) People who used to live in Russia who now live abroad FALSE 1282211 1507881
6025000813183 Lived in Saudi Arabia (formerly Ex-pats – Saudi Arabia) behaviors Ex-pats , Lived in Saudi Arabia (formerly Ex-pats – Saudi Arabia) People who used to live in the Kingdom of Saudi Arabia who now live abroad FALSE 1098263 1291558
6025054896983 Lived in Chile (formerly Expats – Chile) behaviors Ex-pats , Lived in Chile (formerly Expats – Chile) People who used to live in Chile who now live abroad FALSE 543035 638610
6025670492783 Lived in Rwanda (formerly Ex-pats – Rwanda) behaviors Ex-pats , Lived in Rwanda (formerly Ex-pats – Rwanda) People who used to live in Rwanda who now live abroad FALSE 134193 157812
6025753961783 Family of those who live abroad behaviors Ex-pats , Family of those who live abroad Family of people who now live abroad FALSE 32474338 38189822
6026404871583 Lived in Venezuela (formerly Expats – Venezuela) behaviors Ex-pats , Lived in Venezuela (formerly Expats – Venezuela) People who used to live in Venezuela who now live abroad FALSE 5117986 6018752
6026660740983 Owns: Galaxy S6 behaviors Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy S6 People who are likely to own a Samsung Galaxy S6 mobile device FALSE 772850 908872
6027147160983 Lived in Malaysia (formerly Ex-pats – Malaysia) behaviors Ex-pats , Lived in Malaysia (formerly Ex-pats – Malaysia) People who used to live in Malaysia who now live abroad FALSE 1825450 2146730
6027148962983 Lived in Romania (formerly Ex-pats – Romania) behaviors Ex-pats , Lived in Romania (formerly Ex-pats – Romania) People who used to live in Romania who now live abroad FALSE 1774365 2086654
6027148973583 Lived in South Korea (formerly Ex-pats – South Korea) behaviors Ex-pats , Lived in South Korea (formerly Ex-pats – South Korea) People who used to live in South Korea who now live abroad FALSE 3098005 3643254
6027149004983 Lived in Serbia (formerly Expats – Serbia) behaviors Ex-pats , Lived in Serbia (formerly Expats – Serbia) People who used to live in Serbia who now live abroad FALSE 575873 677227
6027149006383 Lived in Vietnam (formerly Ex-pats – Vietnam) behaviors Ex-pats , Lived in Vietnam (formerly Ex-pats – Vietnam) People who used to live in Vietnam who now live abroad FALSE 4994960 5874073
6027149008183 Lived in Peru (formerly Ex-pats – Peru) behaviors Ex-pats , Lived in Peru (formerly Ex-pats – Peru) People who used to live in Peru who now live abroad FALSE 1757621 2066963
6028974370383 People in India who prefer high-value goods behaviors Consumer classification , India , People in India who prefer high-value goods Aligned to (A) group, people in India who are predicted to prefer high-value goods FALSE 88053823 103551297
6028974351183 People in India who prefer mid- and high-value goods behaviors Consumer classification , India , People in India who prefer mid- and high-value goods Aligned to (A+B) group, people in India who are predicted to prefer mid to high-value goods FALSE 149350418 175636092
6029587661983 Facebook access (OS): Windows 10 behaviors Digital activities , Operating system used , Facebook access (OS): Windows 10 People who primarily access Facebook using Windows 10 FALSE 60842 71551
6031259562783 Owns: iPhone 6S behaviors Mobile Device User , All Mobile Devices by Brand, Apple , Owns: iPhone 6S People who are likely to own an iPhone 6S mobile device FALSE 3890994 4575809
6031259590183 Owns: iPhone 6S Plus behaviors Mobile Device User , All Mobile Devices by Brand, Apple , Owns: iPhone 6S Plus People who are likely to own an iPhone 6S Plus mobile device. FALSE 3268878 3844201
6041891177783 New Page admins behaviors Digital activities , Facebook page admins, New Page admins People who have become Facebook Page admins within the past two weeks. FALSE 316406417 372093947
6042330550783 Owns: Galaxy Note 5 behaviors Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy Note 5 People who are likely to own a Samsung Galaxy Note 5 mobile device FALSE 33830 39785
6043341245183 Owns: LG V10 behaviors Mobile Device User , All Mobile Devices by Brand, LG , Owns: LG V10 People who are likely to own an LG V10 mobile device FALSE 11840 13925
6043702804583 Lived in Belgium (formerly Expats – Belgium) behaviors Ex-pats , Lived in Belgium (formerly Expats – Belgium) People who used to live in Belgium who now live abroad FALSE 346538 407529
6043523344783 Owns: Galaxy S7 behaviors Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy S7 People who are likely to own a Samsung Galaxy S7 mobile device FALSE 1146183 1347912
6043522870783 Owns: Galaxy S7 Edge behaviors Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy S7 Edge People who are likely to own a Samsung Galaxy S7 Edge mobile device FALSE 1272721 1496720
6046095968983 People in South Africa who prefer high-value goods behaviors Consumer classification , South Africa , People in South Africa who prefer high-value goods Aligned to (8,9,10) LSM group, people in South Africa who are predicted to prefer high-value goods FALSE 2429703 2857331
6046096047583 People in South Africa who prefer mid- and high-value goods behaviors Consumer classification , South Africa , People in South Africa who prefer mid- and high-value goods Aligned to (5,6,7) LSM group, people in South Africa who are predicted to prefer mid- to high-value goods FALSE 3901518 4588186
6046096201583 People in Brazil who prefer high-value goods behaviors Consumer classification , Brazil , People in Brazil who prefer high-value goods Aligned to (A+B) group, people in Brazil who are predicted to prefer high-value goods FALSE 11757965 13827368
6054947014783 Owns: iPhone SE behaviors Mobile Device User , All Mobile Devices by Brand, Apple , Owns: iPhone SE People who likely own an iPhone SE mobile device FALSE 9845809 11578672
6047219032183 Lived in Zambia (formerly Ex-pats – Zambia) behaviors Ex-pats , Lived in Zambia (formerly Ex-pats – Zambia) People who used to live in Zambia who now live abroad FALSE 242234 284868
6055133998183 Facebook access (browser): Microsoft Edge behaviors Digital activities , Internet browser used , Facebook access (browser): Microsoft Edge People who primarily access Facebook using Microsoft Edge FALSE 21048470 24753001
6056265200983 Owns: Oppo behaviors Mobile Device User , All Mobile Devices by Brand, Owns: Oppo People who are likely to own an Oppo mobile device FALSE 174938451 205727619
6056265212183 Owns: VIVO devices behaviors Mobile Device User , All Mobile Devices by Brand, Owns: VIVO devices People who are likely to own VIVO mobile devices FALSE 165136462 194200480
6058034528983 Owns: Galaxy Note 7 behaviors Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy Note 7 People who are likely to own a Samsung Galaxy Note 7 mobile device FALSE 204 240
6059793664583 Lived in Honduras (formerly Ex-pats – Honduras) behaviors Ex-pats , Lived in Honduras (formerly Ex-pats – Honduras) People who used to live in Honduras who now live abroad FALSE 1576508 1853974
6060616578383 Owns: iPhone 7 behaviors Mobile Device User , All Mobile Devices by Brand, Apple , Owns: iPhone 7 People who are likely to own an iPhone 7 mobile device FALSE 6741051 7927477
6060616598183 Owns: iPhone 7 Plus behaviors Mobile Device User , All Mobile Devices by Brand, Apple , Owns: iPhone 7 Plus People who are likely to own an iPhone 7 Plus mobile device. FALSE 8629959 10148832
6061668174383 Owns: Google Pixel behaviors Mobile Device User , All Mobile Devices by Brand, Google , Owns: Google Pixel People who are likely to own a Google Pixel mobile device FALSE 33458 39347
6063136545383 Android: 360 degree media supported behaviors Mobile Device User , Android: 360 degree media supported People whose primary mobile device is Android with support for 360-degree media (photos, videos). FALSE 1209176853 1421991980
6063268655983 Facebook access (OS): Mac Sierra behaviors Digital activities , Operating system used , Facebook access (OS): Mac Sierra People who primarily access Facebook using Mac Sierra FALSE 1817304 2137150
6065048233383 Android: 360 degree media not supported behaviors Mobile Device User , Android: 360 degree media not supported People whose primary mobile device is Android without support for 360 degree media (photos, videos). FALSE 2092136 2460353
6068844014183 Lived in Lebanon (formerly Ex-pats – Lebanon) behaviors Ex-pats , Lived in Lebanon (formerly Ex-pats – Lebanon) People who used to live in Lebanon who now live abroad FALSE 762430 896618
6068843912183 Lived in Jordan (formerly Ex-pats – Jordan) behaviors Ex-pats , Lived in Jordan (formerly Ex-pats – Jordan) People who used to live in Jordan who now live abroad FALSE 763925 898376
6071631541183 Engaged shoppers behaviors Purchase behaviour, Engaged shoppers People who have clicked on the call-to-action button “Shop Now” in the past week. FALSE 672890008 791318650
6071248932383 Lived in Algeria (formerly Ex-pats – Algeria) behaviors Ex-pats , Lived in Algeria (formerly Ex-pats – Algeria) People who used to live in Algeria who now live abroad FALSE 1052940 1238258
6071248894383 Lived in Nicaragua (formerly Ex-pats – Nicaragua) behaviors Ex-pats , Lived in Nicaragua (formerly Ex-pats – Nicaragua) People who used to live in Nicaragua who now live abroad FALSE 902438 1061268
6071248981583 Lived in Kuwait (formerly Ex-pats – Kuwait) behaviors Ex-pats , Lived in Kuwait (formerly Ex-pats – Kuwait) People who used to live in Kuwait who now live abroad FALSE 148403 174523
6071249058983 Lived in Qatar (formerly Ex-pats – Qatar) behaviors Ex-pats , Lived in Qatar (formerly Ex-pats – Qatar) People who used to live in Qatar who now live abroad FALSE 115073 135327
6071590219583 Owns: Gionee behaviors Mobile Device User , All Mobile Devices by Brand, Owns: Gionee People who likely own a Gionee mobile device FALSE 845441 994239
6075237200983 Owns: Galaxy S8 behaviors Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy S8 People who likely own a Galaxy S8 mobile device FALSE 2512420 2954606
6075237226583 Owns: Galaxy S8+ behaviors Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy S8+ People who are likely to own a Galaxy S8+ mobile device FALSE 1642275 1931316
6080562616983 Football fans (high content engagement) behaviors Soccer , Football fans (high content engagement) Interacted with content related to football five or more times over the past 90 days. FALSE 9588252 11275785
6080562614783 Football fans (moderate content engagement) behaviors Soccer , Football fans (moderate content engagement) Interacted with content related to football and sports fewer than five times over the past 90 days. FALSE 94525839 111162387
6082317210583 People who prefer high-value goods in UAE behaviors Consumer classification , UAE , People who prefer high-value goods in UAE Aligned to (A) group, people in UAE who are predicted to prefer high-value goods FALSE 68737 80835
6082317378383 People who prefer mid and high-value goods in UAE behaviors Consumer classification , UAE , People who prefer mid and high-value goods in UAE Aligned to (A+B) group, people in UAE who are predicted to prefer mid-to-high-value goods FALSE 344455 405080
6082317392983 People who prefer high-value goods in the Kingdom of Saudi Arabia behaviors Consumer classification , Kingdom of Saudi Arabia , People who prefer high-value goods in the Kingdom of Saudi Arabia Aligned to (A) group, people in the Kingdom of Saudi Arabia who are predicted to prefer high-value goods FALSE 1066201 1253853
6082317405583 People who prefer mid to high-value goods in the Kingdom of Saudi Arabia behaviors Consumer classification , Kingdom of Saudi Arabia , People who prefer mid to high-value goods in the Kingdom of Saudi Arabia Aligned to (A+B) group, people in the Kingdom of Saudi Arabia who are predicted to prefer mid to high-value goods FALSE 2468528 2902990
6083036245383 Owns: Galaxy Note 8 behaviors Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy Note 8 People who are likely to own a Samsung Galaxy Note 8 mobile device FALSE 34844 40977
6085888747383 People in Mexico who prefer high-value goods behaviors Consumer classification , Mexico , People in Mexico who prefer high-value goods Aligned to (AB) group, people in Mexico who are predicted to prefer high-value goods FALSE 4811683 5658540
6085888777383 People in Mexico who prefer mid- and high-value goods behaviors Consumer classification , Mexico , People in Mexico who prefer mid- and high-value goods Aligned to (ABC+) group, people in Mexico who are predicted to prefer mid to high-value goods FALSE 15900290 18698742
6086568164383 Marketing API developers (last 90 days) behaviors More categories , Marketing API developers (last 90 days) App developers that have used the Facebook marketing API in the last 90 days. FALSE 49821 58590
6086326043983 People in Chile who prefer high-value goods behaviors Consumer classification , Chile , People in Chile who prefer high-value goods Aligned to (ABC1) group, people in Chile who are predicted to prefer high-value goods FALSE 754648 887467
6086326068183 People in Chile who prefer mid- and high-value goods behaviors Consumer classification , Chile , People in Chile who prefer mid- and high-value goods Aligned to (A+B) group, people in Chile who are predicted to prefer mid to high-value goods FALSE 2275689 2676211
6086326072983 People in Argentina who prefer high-value goods behaviors Consumer classification , Argentina , People in Argentina who prefer high-value goods Aligned to (ABC1) group, people in Argentina who are predicted to prefer high-value goods FALSE 939669 1105051
6086326078383 People in Argentina who prefer mid- and high-value goods behaviors Consumer classification , Argentina , People in Argentina who prefer mid- and high-value goods Aligned to (ABC1+C2) group, people in Argentina who are predicted to prefer mid to high-value goods FALSE 3562984 4190070
6089632523783 People in Turkey who prefer high-value goods behaviors Consumer classification , Turkey , People in Turkey who prefer high-value goods Aligned to (A) SES group, people in Turkey who are predicted to prefer high-value goods FALSE 1700222 1999462
6089632452783 People in Turkey who prefer mid- and high-value goods behaviors Consumer classification , Turkey , People in Turkey who prefer mid- and high-value goods Aligned to (A+B) SES group, people in Turkey who are predicted to prefer mid- to high-value goods FALSE 6958070 8182691
6091658707783 Uses a mobile device (less than 1 month) behaviors Mobile device user/device use time , Uses a mobile device (less than 1 month) People who are likely to have used a mobile device for less than 1 month FALSE 66962647 78748073
6091658708183 Uses a mobile device (1-3 months) behaviors Mobile device user/device use time, Uses a mobile device (1-3 months) People who are likely to have used a mobile device for 1-3 months FALSE 165829719 195015750
6091658512983 Uses a mobile device (4-6 months) behaviors Mobile device user/device use time, Uses a mobile device (4-6 months) People who are likely to have used a mobile device for 4-6 months FALSE 190109345 223568590
6091658512183 Uses a mobile device (7-9 months) behaviors Mobile device user/device use time, Uses a mobile device (7-9 months) People who are likely to have used a mobile device for 7-9 months FALSE 153962136 181059473
6091658540583 Uses a mobile device (10-12 months) behaviors Mobile device user/device use time , Uses a mobile device (10-12 months) People who are likely to have used a mobile device for 10-12 months FALSE 129175255 151910100
6091658562383 Uses a mobile device (13-18 months) behaviors Mobile device user/device use time , Uses a mobile device (13-18 months) People who are likely to have used a mobile device for 13-18 months FALSE 207472253 243987370
6091658651583 Uses a mobile device (19-24 months) behaviors Mobile device user/device use time , Uses a mobile device (19-24 months) People who are likely to have used a mobile device for 19-24 months FALSE 176642492 207731571
6091658683183 Uses a mobile device (25 months+) behaviors Mobile device user/device use time, Uses a mobile device (25 months+) People who are likely to have used a mobile device for 25+ months FALSE 600936921 706701820
6092145447383 People in Indonesia who prefer high-value goods behaviors Consumer classification , Indonesia , People in Indonesia who prefer high-value goods Aligned to (Upper I) group, people in Indonesia who are predicted to prefer high-value goods FALSE 16424498 19315210
6092512412783 Facebook access (mobile): iPhone 8 behaviors Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPhone 8 People who are likely to own an iPhone 8 mobile device. FALSE 5550073 6526886
6092512424583 Facebook access (mobile): iPhone 8 Plus behaviors Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPhone 8 Plus People who are likely to own an iPhone 8 Plus mobile device FALSE 8215284 9661174
6092512462983 Facebook access (mobile): iPhone X behaviors Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPhone X People who are likely to own an iPhone X mobile device FALSE 7432419 8740525
6100052630783 Interested in upcoming events behaviors More categories , Interested in upcoming events People who have expressed interest in attending an upcoming Facebook event. FALSE 6303151 7412506
6100406737783 People in Pakistan who prefer high-value goods behaviors Consumer classification , Pakistan , People in Pakistan who prefer high-value goods Aligned to (A) SEC group, people in Pakistan who are predicted to prefer high-value goods FALSE 1538664 1809470
6100407062383 People in Pakistan who prefer mid- and high-value goods behaviors Consumer classification , Pakistan , People in Pakistan who prefer mid- and high-value goods Aligned to (A+B) SEC group, people in Pakistan who are predicted to prefer mid- to high-value goods FALSE 7630532 8973506
6100407234583 People in Malaysia who prefer mid- and high-value goods behaviors Consumer classification , Malaysia , People in Malaysia who prefer mid- and high-value goods Aligned to (AB+C1) SEC group, people in Malaysia who are predicted to prefer mid- to high-value goods FALSE 6198394 7289312
6100407132383 People in Malaysia who prefer high-value goods behaviors Consumer classification , Malaysia , People in Malaysia who prefer high-value goods Aligned to (AB) SEC group, people in Malaysia who are predicted to prefer high-value goods FALSE 2354369 2768739
6106223987983 Owns: Galaxy S9 behaviors Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy S9 People who are likely to own a Galaxy S9 mobile device FALSE 3105319 3651856
6106224431383 Owns: Galaxy S9+ behaviors Mobile Device User , All Mobile Devices by Brand, Samsung , Owns: Galaxy S9+ People who are likely to own a Galaxy S9+ mobile device FALSE 3002565 3531017
6106805412383 Owns: OnePlus behaviors Mobile Device User, Owns: OnePlus People who are likely to own a OnePlus mobile device FALSE 17961699 21122959
6110446593183 People in Indonesia who prefer mid-value and high-value goods behaviors Consumer classification , Indonesia , People in Indonesia who prefer mid-value and high-value goods Aligned to (upper I, upper II and middle I) group, people in Indonesia who are predicted to prefer high-value goods FALSE 41063262 48290397
6110813675983 People in Brazil who prefer mid-value and high-value goods behaviors Consumer classification , Brazil , People in Brazil who prefer mid-value and high-value goods Aligned to (A+B+C) group, people in Brazil who are predicted to prefer mid-value and high-value goods FALSE 28592723 33625043
6110633547383 People who prefer high-value goods in the Philippines behaviors Consumer classification , Philippines , People who prefer high-value goods in the Philippines Aligned to (A) group, people in the Philippines who are predicted to prefer high-value goods FALSE 6207039 7299479
6110636171983 People who prefer mid-value and high-value goods in the Philippines behaviors Consumer classification , Philippines , People who prefer mid-value and high-value goods in the Philippines Aligned to (A+B) group, people in the Philippines who are predicted to prefer mid to high-value goods FALSE 27786753 32677222
6120699687383 Facebook access (mobile): iPhone XS behaviors Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPhone XS People who are likely to own an iPhone XS mobile device FALSE 4334244 5097072
6120699721983 Facebook access (mobile): iPhone XS Max behaviors Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPhone XS Max People who are likely to own an iPhone XS Max mobile device FALSE 6848094 8053359
6120699725783 Facebook access (mobile): iPhone XR behaviors Mobile Device User , All Mobile Devices by Brand , Apple , Facebook access (mobile): iPhone XR People who are likely to own an iPhone XR mobile device FALSE 14376830 16907153
6202657388783 People who have visited Facebook Gaming behaviors Digital activities , People who have visited Facebook Gaming People who have recently accessed Facebook Gaming to watch videos, view posts, access tournaments or play games. FALSE 13639459 16040004
6203619619383 Friends of football fans behaviors Soccer , Friends of football fans Friends of anyone who is a moderately or highly engaged football fan. Excludes people who are already football fans. FALSE 1541808271 1813166527
6203619967383 Friends of those who live abroad behaviors Ex-pats , Friends of those who live abroad Friends of people who now live abroad FALSE 1688480494 1985653061
6297846662583 Instagram business profile admins behaviors Digital activities , Instagram business profile admins People who are an administrator of an Instagram business profile FALSE 51334463 60369329
6273196847983 New active business (< 12 months) behaviors Digital activities , New active business (< 12 months) Admins of engaged businesses that were created in the last 12 months. FALSE 15557027 18295064
6273108079183 New active business (< 6 months) behaviors Digital activities , New active business (< 6 months) Admins of engaged businesses that were created in the last 6 months. FALSE 8845636 10402469
6273108107383 New active business (< 24 months) behaviors Digital activities , New active business (< 24 months) Admins of engaged businesses that were created in the last 24 months. FALSE 25967508 30537790
6320095608983 Recently detected devices behaviors Behaviours , Mobile Device User , All Mobile Devices by Operating System, Facebook access (mobile) , Recently detected devices Users who have recently connected to Facebook on a new smartphone device FALSE 582764518 685331074
6320095650783 Recently detected iPhone 14 devices behaviors Behaviours , Mobile Device User , All Mobile Devices by Operating System, Facebook access (mobile) , Recently detected iPhone 14 devices Users who have recently connected to Facebook on an iPhone 14 device FALSE 14018518 16485778
6378518542983 All creators behaviors Digital activities, All creators People who are creators on Facebook and Instagram. FALSE 19897946 23399985
6378552460983 Internet personality creators behaviors Digital activities , Internet personality creators People who are Internet personality creators on Facebook and Instagram. FALSE 5923459 6965988
6378532690183 Music creators behaviors Digital activitiesTeam, Music creators People who are music creators on Facebook and Instagram. FALSE 2081538 2447889
6377407066783 Food and drink creators behaviors Digital activities , Food and drink creators People who are food and drink creators on Facebook and Instagram. FALSE 1050746 1235678
6377406843183 Travel and outdoors creators behaviors Digital activities , Travel and outdoors creators People who are travel and outdoors creators on Facebook and Instagram. FALSE 821755 966385
6377407134383 Health and wellness creators behaviors Digital activities , Health and wellness creators People who are health and wellness creators on Facebook and Instagram. FALSE 324114 381159
6377178995383 Shops admins behaviors Digital activities, Shops admins People who manage a shop on Facebook or Instagram. FALSE 671257 789399
6356471865383 Facebook Lite app users behaviors Digital activities , Facebook Lite app users People who use the Facebook Lite app. FALSE 292864591 344408760

interests_df <- get_fb_parameter_ids(type    = "interests",
                                     version = VERSION, 
                                     token   = TOKEN)

interests_df %>% 
  kable() %>% 
  kable_styling() %>% 
  scroll_box(width = "100%",
             height = "300px")
id name type path lifecycle audience_size_lower_bound audience_size_upper_bound
6002839660079 Cosmetics (personal care) interests Shopping and fashion , Beauty (social concept) , Cosmetics (personal care) 2 954268571 1122219840
6002866718622 Science (science) interests Business and industry, Science (science) 2 600334489 705993360
6002867432822 Beauty (social concept) interests Shopping and fashion , Beauty (social concept) 2 1271912474 1495769070
6002868021822 Adventure travel (travel & tourism) interests Hobbies and activities , Travel (travel & tourism) , Adventure travel (travel & tourism) 2 275203844 323639721
6002868910910 Organic food (food & drink) interests Food and drink (consumables), Food (food & drink) , Organic food (food & drink) 2 273132221 321203492
6002884511422 Small business (business & finance) interests Business and industry , Small business (business & finance) 2 177101195 208271006
6002920953955 Interior design (design) interests Business and industry , Design (design) , Interior design (design) 2 488461241 574430420
6002925538921 Acting (performing arts) interests Hobbies and activities , Arts and music (art) , Acting (performing arts) 2 195934863 230419400
6002926108721 Vacations (social concept) interests Hobbies and activities , Travel (travel & tourism) , Vacations (social concept) 2 312986868 368072557
6002929380259 Volleyball (sport) interests Sports and outdoors, Sports (sports) , Volleyball (sport) 2 342179787 402403430
6002936693259 Soft drinks (nonalcoholic beverage) interests Food and drink (consumables) , Beverages (food & drink) , Soft drinks (nonalcoholic beverage) 2 187387091 220367220
6002951587955 Classical music (music) interests Entertainment (leisure) , Music (entertainment & media), Classical music (music) 2 324272448 381344400
6002957026250 Theatre (performing arts) interests Entertainment (leisure) , Live events (entertainment), Theatre (performing arts) 2 512677397 602908620
6002960574320 Tablet computers (computers & electronics) interests Technology (computers & electronics) , Computers (computers & electronics) , Tablet computers (computers & electronics) 2 512619285 602840280
6002963523717 Aviation (air travel) interests Business and industry, Aviation (air travel) 2 164384736 193316450
6002964239317 Mexican cuisine (food & drink) interests Food and drink (consumables) , Cuisine (food & drink) , Mexican cuisine (food & drink) 8 102614047 120674120
6002964500317 Word games (games) interests Entertainment (leisure), Games (leisure) , Word games (games) 2 62499974 73499970
6002970406974 Concerts (music event) interests Entertainment (leisure) , Live events (entertainment), Concerts (music event) 2 259957134 305709590
6002971085794 Mobile phones (smart phone) interests Technology (computers & electronics) , Consumer electronics (computers & electronics), Mobile phones (smart phone) 2 1007046692 1184286910
6002971095994 Action games (video games) interests Entertainment (leisure) , Games (leisure) , Action games (video games) 2 152967687 179890000
6002979499920 Fishing (outdoors activities) interests Sports and outdoors , Outdoor recreation (outdoors activities), Fishing (outdoors activities) 2 278638503 327678880
6002984573619 Surfing (water sport) interests Sports and outdoors , Outdoor recreation (outdoors activities), Surfing (water sport) 2 126273336 148497444
6002985584323 Outdoor recreation (outdoors activities) interests Sports and outdoors , Outdoor recreation (outdoors activities) 2 581478290 683818470
6002986104968 Mystery fiction (entertainment & media) interests Entertainment (leisure) , Reading (communication) , Mystery fiction (entertainment & media) 2 147119005 173011950
6002991239659 Motherhood (children & parenting) interests Family and relationships , Motherhood (children & parenting) 2 698407040 821326680
6002991736368 Reading (communication) interests Entertainment (leisure), Reading (communication) 2 1279238928 1504384980
6002997799844 Singing (music) interests Hobbies and activities, Arts and music (art) , Singing (music) 2 425761938 500696040
6002998123892 Japanese cuisine (food & drink) interests Food and drink (consumables) , Cuisine (food & drink) , Japanese cuisine (food & drink) 8 135928681 159852130
6002998517244 Camcorders (consumer electronics) interests Technology (computers & electronics) , Consumer electronics (computers & electronics), Camcorders (consumer electronics) 2 18698377 21989292
6003012317397 Gambling (gambling) interests Entertainment (leisure), Games (leisure) , Gambling (gambling) 2 331443443 389777490
6003012461997 Beer (alcoholic drinks) interests Food and drink (consumables) , Alcoholic beverages (food & drink), Beer (alcoholic drinks) 2 333167653 391805160
6003020834693 Music (entertainment & media) interests Entertainment (leisure) , Music (entertainment & media) 2 1519764804 1787243410
6003025268985 Tattoos (body art) interests Shopping and fashion , Beauty (social concept), Tattoos (body art) 2 495843528 583111990
6003029869785 Arts and music (art) interests Hobbies and activities, Arts and music (art) 2 1390925697 1635728620
6003030029655 Chinese cuisine (food & drink) interests Food and drink (consumables) , Cuisine (food & drink) , Chinese cuisine (food & drink) 8 152438027 179267120
6003030519207 Online poker (gambling) interests Entertainment (leisure), Games (leisure) , Online poker (gambling) 2 151133044 177732460
6003049202156 Community issues (law & government) interests Hobbies and activities , Politics and social issues (politics), Community issues (law & government) 2 236059226 277605650
6003053056644 Gardening (outdoor activities) interests Hobbies and activities , Home and garden , Gardening (outdoor activities) 2 356451726 419187230
6003054884732 Coupons (coupons & discounts) interests Shopping and fashion , Shopping (retail) , Coupons (coupons & discounts) 2 577801581 679494660
6003059385128 Ecotourism (travel & tourism) interests Hobbies and activities , Travel (travel & tourism) , Ecotourism (travel & tourism) 2 124376713 146267015
6003059733932 First-person shooter games (video games) interests Entertainment (leisure) , Games (leisure) , First-person shooter games (video games) 2 558766989 657109980
6003062205328 Retail banking (banking) interests Business and industry , Banking (finance) , Retail banking (banking) 2 23764328 27946850
6003063638807 Investment banking (banking) interests Business and industry , Banking (finance) , Investment banking (banking) 2 32717426 38475693
6003064649070 Mountains (places) interests Hobbies and activities , Travel (travel & tourism), Mountains (places) 2 309836930 364368230
6003070122382 Toys (toys) interests Shopping and fashion, Toys (toys) 2 480501513 565069780
6003070856229 Games (leisure) interests Entertainment (leisure), Games (leisure) 2 1242865136 1461609400
6003074487739 E-books (publications) interests Entertainment (leisure), Reading (communication), E-books (publications) 2 366680399 431216150
6003074954515 Sales (business & finance) interests Business and industry , Sales (business & finance) 2 892383903 1049443470
6003076016339 Email marketing (marketing) interests Business and industry , Online (computing) , Email marketing (marketing) 2 14417554 16955044
6003083357650 Manga (anime & manga) interests Entertainment (leisure), Reading (communication), Manga (anime & manga) 2 226028885 265809969
6003087413192 Baseball (sport) interests Sports and outdoors, Sports (sports) , Baseball (sport) 2 450915484 530276610
6003088846792 Beauty salons (cosmetics) interests Shopping and fashion , Beauty (social concept) , Beauty salons (cosmetics) 2 618195365 726997750
6003090714101 Car rentals (transportation) interests Hobbies and activities , Travel (travel & tourism) , Car rentals (transportation) 2 153514217 180532720
6003092330156 Mountain biking (cycling) interests Sports and outdoors , Outdoor recreation (outdoors activities), Mountain biking (cycling) 2 94696265 111362808
6003092882217 Trucks (vehicles) interests Hobbies and activities , Vehicles (transportation), Trucks (vehicles) 2 272359982 320295340
6003096002658 Graphic design (visual art) interests Business and industry , Design (design) , Graphic design (visual art) 2 315060008 370510570
6003101323797 Fatherhood (children & parenting) interests Family and relationships , Fatherhood (children & parenting) 8 352672278 414742600
6003102729234 Italian cuisine (food & drink) interests Food and drink (consumables) , Cuisine (food & drink) , Italian cuisine (food & drink) 8 146667498 172480978
6003102988840 Latin American cuisine (food & drink) interests Food and drink (consumables) , Cuisine (food & drink) , Latin American cuisine (food & drink) 8 41796581 49152780
6003103108917 Boutiques (retailers) interests Shopping and fashion , Shopping (retail) , Boutiques (retailers) 2 532794960 626566874
6003105618835 Crafts (hobbies) interests Hobbies and activities, Arts and music (art) , Crafts (hobbies) 2 423784727 498370840
6003106813190 Hunting (sport) interests Sports and outdoors , Outdoor recreation (outdoors activities), Hunting (sport) 2 201917244 237454680
6003107699532 Soul music (music) interests Entertainment (leisure) , Music (entertainment & media), Soul music (music) 2 461193307 542363330
6003107902433 Association football (Soccer) interests Sports and outdoors , Sports (sports) , Association football (Soccer) 2 1239072202 1457148910
6003108411433 Rabbits (animals) interests Hobbies and activities, Pets (animals) , Rabbits (animals) 2 114737916 134931790
6003108649035 Spanish cuisine (food & drink) interests Food and drink (consumables) , Cuisine (food & drink) , Spanish cuisine (food & drink) 8 35717153 42003372
6003108826384 Music festivals (events) interests Entertainment (leisure) , Live events (entertainment), Music festivals (events) 2 293265824 344880610
6003115804542 Desktop computers (consumer electronics) interests Technology (computers & electronics) , Computers (computers & electronics) , Desktop computers (consumer electronics) 2 155917219 183358650
6003116038942 Computer monitors (computer hardware) interests Technology (computers & electronics) , Computers (computers & electronics) , Computer monitors (computer hardware) 2 145069931 170602240
6003120620858 Coffeehouses (coffee) interests Food and drink (consumables), Restaurants (dining) , Coffeehouses (coffee) 2 411936607 484437450
6003122958658 Boating (outdoors activities) interests Sports and outdoors , Outdoor recreation (outdoors activities), Boating (outdoors activities) 2 76591163 90071208
6003125064949 Electric vehicle (vehicle) interests Hobbies and activities , Vehicles (transportation) , Electric vehicle (vehicle) 2 98080261 115342387
6003125948045 Desserts (food & drink) interests Food and drink (consumables), Food (food & drink) , Desserts (food & drink) 2 398663415 468828177
6003126215349 Comics (comics & cartoons) interests Entertainment (leisure) , Reading (communication) , Comics (comics & cartoons) 2 284793789 334917497
6003126358188 TV game shows (television show) interests Entertainment (leisure) , TV (movies & television) , TV game shows (television show) 2 110719600 130206250
6003127206524 Digital marketing (marketing) interests Business and industry , Online (computing) , Digital marketing (marketing) 2 149444939 175747249
6003129926917 Animated movies (movies) interests Entertainment (leisure) , Movies (entertainment & media), Animated movies (movies) 2 418699651 492390790
6003132926214 Furniture (home furnishings) interests Hobbies and activities , Home and garden , Furniture (home furnishings) 2 522148358 614046470
6003133486214 Vehicles (transportation) interests Hobbies and activities , Vehicles (transportation) 2 847249855 996365830
6003133978408 Chocolate (food & drink) interests Food and drink (consumables), Food (food & drink) , Chocolate (food & drink) 2 475445765 559124220
6003134986700 Baking (cooking) interests Food and drink (consumables), Cooking (food & drink) , Baking (cooking) 2 356463045 419200542
6003137105590 Volunteering (social causes) interests Hobbies and activities , Politics and social issues (politics), Volunteering (social causes) 2 76758137 90267570
6003139266461 Movies (entertainment & media) interests Entertainment (leisure) , Movies (entertainment & media) 2 1420386760 1670374830
6003141785766 Mortgage loans (banking) interests Business and industry , Personal finance (banking), Mortgage loans (banking) 2 144190748 169568320
6003142705949 Computer processors (computer hardware) interests Technology (computers & electronics) , Computers (computers & electronics) , Computer processors (computer hardware) 2 186229379 219005750
6003142974961 Painting (visual art) interests Hobbies and activities, Arts and music (art) , Painting (visual art) 2 402405442 473228800
6003143720966 Personal finance (banking) interests Business and industry , Personal finance (banking) 2 729818596 858266670
6003146442552 Jazz music (music) interests Entertainment (leisure) , Music (entertainment & media), Jazz music (music) 2 462368469 543745320
6003146718552 Auto racing (motor sports) interests Sports and outdoors , Sports (sports) , Auto racing (motor sports) 2 316189499 371838851
6003146729229 Distilled beverage (liquor) interests Food and drink (consumables) , Alcoholic beverages (food & drink), Distilled beverage (liquor) 2 204502551 240495000
6003147868152 Parties (event) interests Entertainment (leisure) , Live events (entertainment), Parties (event) 2 384128267 451734843
6003148544265 Wine (alcoholic drinks) interests Food and drink (consumables) , Alcoholic beverages (food & drink), Wine (alcoholic drinks) 2 332466045 390980070
6003151951349 Computer servers (computing) interests Technology (computers & electronics), Computers (computers & electronics) , Computer servers (computing) 2 87445790 102836250
6003153672865 Online games (video games) interests Entertainment (leisure) , Games (leisure) , Online games (video games) 2 595532287 700345970
6003154043305 Performing arts (performing arts) interests Hobbies and activities , Arts and music (art) , Performing arts (performing arts) 2 431488095 507430000
6003155333705 Vegetarianism (diets) interests Food and drink (consumables), Food (food & drink) , Vegetarianism (diets) 8 207809507 244383981
6003156321008 Bars (bars, clubs & nightlife) interests Entertainment (leisure) , Live events (entertainment) , Bars (bars, clubs & nightlife) 2 294046380 345798543
6003157824284 Bollywood movies (movies) interests Entertainment (leisure) , Movies (entertainment & media), Bollywood movies (movies) 2 374775850 440736400
6003159378782 Cats (animals) interests Hobbies and activities, Pets (animals) , Cats (animals) 2 448420365 527342350
6003159413034 Fish (animals) interests Hobbies and activities, Pets (animals) , Fish (animals) 2 321510238 378096040
6003161475030 Comedy movies (movies) interests Entertainment (leisure) , Movies (entertainment & media), Comedy movies (movies) 2 1006576522 1183733990
6003162931434 College football (college sports) interests Sports and outdoors , Sports (sports) , College football (college sports) 2 106642491 125411570
6003166397215 Swimming (water sport) interests Sports and outdoors , Sports (sports) , Swimming (water sport) 2 228292881 268472429
6003172448161 TV talkshows (television show) interests Entertainment (leisure) , TV (movies & television) , TV talkshows (television show) 2 131425399 154556270
6003172932634 TV (movies & television) interests Entertainment (leisure) , TV (movies & television) 2 990365017 1164669260
6003176101552 Massively multiplayer online games (video games) interests Entertainment (leisure) , Games (leisure) , Massively multiplayer online games (video games) 2 111371562 130972958
6003176678152 Automobiles (vehicles) interests Hobbies and activities , Vehicles (transportation), Automobiles (vehicles) 2 677437057 796665980
6003179515414 Dance music (music) interests Entertainment (leisure) , Music (entertainment & media), Dance music (music) 2 285610654 335878130
6003120620858 Coffeehouses (coffee) interests Food and drink (consumables), Restaurants (dining) , Coffeehouses (coffee) 2 411936607 484437450
6003188355978 Dresses (apparel) interests Shopping and fashion , Fashion accessories (accessories), Dresses (apparel) 2 573380000 674294881
6003194056672 Fine art (visual art) interests Hobbies and activities, Arts and music (art) , Fine art (visual art) 2 140074631 164727767
6003195554098 Rhythm and blues music (music) interests Entertainment (leisure) , Music (entertainment & media) , Rhythm and blues music (music) 2 669180255 786955980
6003195797498 Cuisine (food & drink) interests Food and drink (consumables), Cuisine (food & drink) 2 589915858 693741050
6003198370967 Massively multiplayer online role-playing games (video games) interests Entertainment (leisure) , Games (leisure) , Massively multiplayer online role-playing games (video games) 2 109827267 129156867
6003198476967 Handbags (accessories) interests Shopping and fashion , Fashion accessories (accessories), Handbags (accessories) 2 413353863 486104143
6003200340482 Middle Eastern cuisine (food & drink) interests Food and drink (consumables) , Cuisine (food & drink) , Middle Eastern cuisine (food & drink) 8 28441849 33447615
6003206216430 Magazines (publications) interests Entertainment (leisure) , Reading (communication) , Magazines (publications) 2 613485722 721459210
6003206308286 Science fiction movies (movies) interests Entertainment (leisure) , Movies (entertainment & media) , Science fiction movies (movies) 2 363505918 427482960
6003207605030 Minivans (vehicle) interests Hobbies and activities , Vehicles (transportation), Minivans (vehicle) 2 48699184 57270241
6003210799924 Romance novels (publications) interests Entertainment (leisure) , Reading (communication) , Romance novels (publications) 2 229731352 270164070
6003211401886 Air travel (transportation) interests Hobbies and activities , Travel (travel & tourism) , Air travel (transportation) 2 305795457 359615458
6003217093576 Insurance (business & finance) interests Business and industry , Personal finance (banking) , Insurance (business & finance) 2 340092619 399948920
6003220634758 Discount stores (retail) interests Shopping and fashion , Shopping (retail) , Discount stores (retail) 2 393583676 462854404
6003224441249 Televisions (consumer electronics) interests Technology (computers & electronics) , Consumer electronics (computers & electronics), Televisions (consumer electronics) 2 1077339829 1266951640
6003225325061 Thriller movies (movies) interests Entertainment (leisure) , Movies (entertainment & media), Thriller movies (movies) 2 553071904 650412560
6003225556345 Hip hop music (music) interests Entertainment (leisure) , Music (entertainment & media), Hip hop music (music) 2 824386198 969478170
6003225930699 Cruises (travel & tourism business) interests Hobbies and activities , Travel (travel & tourism) , Cruises (travel & tourism business) 2 172715314 203113210
6003232518610 Parenting (children & parenting) interests Family and relationships , Parenting (children & parenting) 2 284294627 334330482
6003234413249 Home improvement (home & garden) interests Hobbies and activities , Home and garden , Home improvement (home & garden) 2 335748624 394840382
6003240742699 Seafood (food & drink) interests Food and drink (consumables), Food (food & drink) , Seafood (food & drink) 2 270206906 317763322
6003243058188 Diners (restaurant) interests Food and drink (consumables), Restaurants (dining) , Diners (restaurant) 2 117957833 138718412
6003243604899 Action movies (movies) interests Entertainment (leisure) , Movies (entertainment & media), Action movies (movies) 2 627385552 737805410
6003246168013 Simulation games (video games) interests Entertainment (leisure) , Games (leisure) , Simulation games (video games) 2 92506020 108787080
6003247127613 Ballet (dance) interests Entertainment (leisure) , Live events (entertainment), Ballet (dance) 2 100333394 117992072
6003247790075 Literature (publications) interests Entertainment (leisure) , Reading (communication) , Literature (publications) 2 372953690 438593540
6003247890613 Dancehalls (music) interests Entertainment (leisure) , Live events (entertainment), Dancehalls (music) 2 103399718 121598069
6003248338072 Casino games (gambling) interests Entertainment (leisure), Games (leisure) , Casino games (gambling) 2 43101736 50687642
6003252179711 Engineering (science) interests Business and industry, Engineering (science) 2 469516258 552151120
6003254590688 Spas (personal care) interests Shopping and fashion , Beauty (social concept), Spas (personal care) 2 588815610 692447158
6003255640088 Sunglasses (eyewear) interests Shopping and fashion , Fashion accessories (accessories), Sunglasses (eyewear) 2 370515170 435725841
6003257757682 Blues music (music) interests Entertainment (leisure) , Music (entertainment & media), Blues music (music) 2 453873086 533754750
6003263791114 Shopping (retail) interests Shopping and fashion, Shopping (retail) 2 1436935629 1689836300
6003266061909 Food (food & drink) interests Food and drink (consumables), Food (food & drink) 2 1204339217 1416302920
6003266225248 Jewelry (apparel) interests Shopping and fashion , Fashion accessories (accessories), Jewelry (apparel) 2 721781530 848815080
6003266266843 Fashion design (design) interests Business and industry , Design (design) , Fashion design (design) 2 347376821 408515142
6003268182136 TV reality shows (movies & television) interests Entertainment (leisure) , TV (movies & television) , TV reality shows (movies & television) 2 520518945 612130280
6003269553527 Sports (sports) interests Sports and outdoors, Sports (sports) 2 1446967517 1701633800
6003270811593 Higher education (education) interests Business and industry , Higher education (education) 2 563361079 662512630
6003274262708 Fiction books (publications) interests Entertainment (leisure) , Reading (communication) , Fiction books (publications) 2 407642219 479387250
6003277229371 Physical fitness (fitness) interests Fitness and wellness (fitness), Physical fitness (fitness) 2 678866522 798347030
6003279598823 Marketing (business & finance) interests Business and industry , Marketing (business & finance) 2 605494039 712060990
6003280676501 GPS devices (consumer electronics) interests Technology (computers & electronics) , Consumer electronics (computers & electronics), GPS devices (consumer electronics) 2 24952948 29344667
6003283801502 Thai cuisine (food & drink) interests Food and drink (consumables), Cuisine (food & drink) , Thai cuisine (food & drink) 8 57123875 67177678
6003286289697 Birds (animals) interests Hobbies and activities, Pets (animals) , Birds (animals) 2 353079693 415221720
6003288647527 Projectors (consumer electronics) interests Technology (computers & electronics) , Consumer electronics (computers & electronics), Projectors (consumer electronics) 2 31618071 37182852
6003289911338 Smartphones (consumer electronics) interests Technology (computers & electronics) , Consumer electronics (computers & electronics), Smartphones (consumer electronics) 2 789714659 928704440
6003290005325 Web development (websites) interests Business and industry , Online (computing) , Web development (websites) 2 45666865 53704234
6003290811111 Current events (politics) interests Hobbies and activities , Current events (politics) 2 879551573 1034352650
6003297396138 Banking (finance) interests Business and industry, Banking (finance) 2 428565144 503992610
6003299204611 Beverages (food & drink) interests Food and drink (consumables), Beverages (food & drink) 2 854926352 1005393390
6003302121228 Guitar (instruments) interests Hobbies and activities, Arts and music (art) , Guitar (instruments) 2 150172134 176602430
6003304473660 SUVs (vehicles) interests Hobbies and activities , Vehicles (transportation), SUVs (vehicles) 2 232294159 273177931
6003306084421 Yoga (fitness) interests Fitness and wellness (fitness), Yoga (fitness) 2 382445073 449755406
6003306415421 Greek cuisine (food & drink) interests Food and drink (consumables), Cuisine (food & drink) , Greek cuisine (food & drink) 8 31516505 37063410
6003324287371 Skiing (skiing & snowboarding) interests Sports and outdoors , Sports (sports) , Skiing (skiing & snowboarding) 2 141235696 166093179
6003325186571 Cameras (photography) interests Technology (computers & electronics) , Consumer electronics (computers & electronics), Cameras (photography) 2 435776598 512473280
6003332344237 Dogs (animals) interests Hobbies and activities, Pets (animals) , Dogs (animals) 2 491744251 578291240
6003332483177 Music videos (entertainment & media) interests Entertainment (leisure) , Music (entertainment & media) , Music videos (entertainment & media) 2 985474268 1158917740
6003341579196 Pop music (music) interests Entertainment (leisure) , Music (entertainment & media), Pop music (music) 2 994586870 1169634160
6003342470823 Board games (games) interests Entertainment (leisure), Games (leisure) , Board games (games) 2 87881277 103348382
6003343485089 Korean cuisine (food & drink) interests Food and drink (consumables) , Cuisine (food & drink) , Korean cuisine (food & drink) 8 102158375 120138250
6003343997689 Home Appliances (consumer electronics) interests Hobbies and activities , Home and garden , Home Appliances (consumer electronics) 2 265301547 311994620
6003346311730 Vietnamese cuisine (food & drink) interests Food and drink (consumables) , Cuisine (food & drink) , Vietnamese cuisine (food & drink) 8 48440493 56966020
6003346592981 Online shopping (retail) interests Shopping and fashion , Shopping (retail) , Online shopping (retail) 2 1347410025 1584554190
6003348453981 Shoes (footwear) interests Shopping and fashion, Clothing (apparel) , Shoes (footwear) 2 841455391 989551540
6003348604581 Fashion accessories (accessories) interests Shopping and fashion , Fashion accessories (accessories) 2 978194413 1150356630
6003348662930 Camping (outdoors activities) interests Sports and outdoors , Outdoor recreation (outdoors activities), Camping (outdoors activities) 2 240108356 282367427
6003349175527 Computer memory (computer hardware) interests Technology (computers & electronics), Computers (computers & electronics) , Computer memory (computer hardware) 2 34725485 40837171
6003349442621 Entertainment (leisure) interests Entertainment (leisure) 2 1762191547 2072337260
6003351312828 Musical theatre (performing arts) interests Entertainment (leisure) , Movies (entertainment & media) , Musical theatre (performing arts) 2 99099132 116540580
6003351764757 Triathlons (athletics) interests Sports and outdoors , Sports (sports) , Triathlons (athletics) 8 95150246 111896690
6003353550130 Motorcycles (vehicles) interests Hobbies and activities , Vehicles (transportation), Motorcycles (vehicles) 2 415968877 489179400
6003359996821 Nature (science) interests Hobbies and activities , Travel (travel & tourism), Nature (science) 2 815391156 958900000
6003361714600 Nightclubs (bars, clubs & nightlife) interests Entertainment (leisure) , Live events (entertainment) , Nightclubs (bars, clubs & nightlife) 2 334577993 393463720
6003369240775 Basketball (sport) interests Sports and outdoors, Sports (sports) , Basketball (sport) 2 714404481 840139670
6003369782940 Credit cards (credit & lending) interests Business and industry , Personal finance (banking) , Credit cards (credit & lending) 2 434819319 511347520
6003370636074 Search engine optimization (software) interests Business and industry , Online (computing) , Search engine optimization (software) 2 36242695 42621410
6003371567474 Entrepreneurship (business & finance) interests Business and industry , Entrepreneurship (business & finance) 2 382208471 449477162
6003372667195 Fast food restaurants (dining) interests Food and drink (consumables) , Restaurants (dining) , Fast food restaurants (dining) 2 169866686 199763223
6003373175581 Documentary movies (movies) interests Entertainment (leisure) , Movies (entertainment & media), Documentary movies (movies) 2 440272559 517760530
6003375422677 Drama movies (movies) interests Entertainment (leisure) , Movies (entertainment & media), Drama movies (movies) 2 473430323 556754060
6003376089674 American football (sport) interests Sports and outdoors , Sports (sports) , American football (sport) 2 417768477 491295730
6003380576181 Role-playing games (video games) interests Entertainment (leisure) , Games (leisure) , Role-playing games (video games) 2 152068967 178833106
6003381994165 Portable media players (audio equipment) interests Technology (computers & electronics) , Consumer electronics (computers & electronics), Portable media players (audio equipment) 2 6968758 8195260
6003382151137 Reptiles (animals) interests Hobbies and activities, Pets (animals) , Reptiles (animals) 2 49090909 57730910
6003384248805 Fitness and wellness (fitness) interests Fitness and wellness (fitness) 8 1083752219 1274492610
6003385141743 Racing games (video game) interests Entertainment (leisure) , Games (leisure) , Racing games (video game) 2 123480765 145213380
6003385609165 Recipes (food & drink) interests Food and drink (consumables), Cooking (food & drink) , Recipes (food & drink) 2 480500399 565068470
6003387418453 Web hosting (computing) interests Business and industry , Online (computing) , Web hosting (computing) 2 24069693 28305960
6003387633593 Drums (instruments) interests Hobbies and activities, Arts and music (art) , Drums (instruments) 2 116439379 136932710
6003388314512 Investment (business & finance) interests Business and industry , Personal finance (banking) , Investment (business & finance) 2 412508707 485110240
6003389760112 Social media marketing (marketing) interests Business and industry , Online (computing) , Social media marketing (marketing) 2 84384732 99236446
6003390752144 Shopping malls (retail) interests Shopping and fashion , Shopping (retail) , Shopping malls (retail) 2 588304336 691845900
6003392512725 Energy drinks (nonalcoholic beverage) interests Food and drink (consumables) , Beverages (food & drink) , Energy drinks (nonalcoholic beverage) 2 97544710 114712580
6003394580331 RVs (vehicle) interests Hobbies and activities , Vehicles (transportation), RVs (vehicle) 2 53278409 62655410
6003395414271 Construction (industry) interests Business and industry , Construction (industry) 2 466283290 548349150
6003397425735 Tennis (sport) interests Sports and outdoors, Sports (sports) , Tennis (sport) 2 329849081 387902520
6003397496347 Running (sport) interests Fitness and wellness (fitness), Running (sport) 2 295862363 347934139
6003398056603 Fast casual restaurants (restaurant) interests Food and drink (consumables) , Restaurants (dining) , Fast casual restaurants (restaurant) 2 127329706 149739735
6003402305839 Business (business & finance) interests Business and industry , Business (business & finance) 2 997456139 1173008420
6003402518839 Web design (websites) interests Business and industry, Online (computing) , Web design (websites) 2 53903690 63390740
6003404634364 Computers (computers & electronics) interests Technology (computers & electronics), Computers (computers & electronics) 2 1176187032 1383195950
6003409043877 Alcoholic beverages (food & drink) interests Food and drink (consumables) , Alcoholic beverages (food & drink) 2 533115918 626944320
6003409392877 Weddings (weddings) interests Family and relationships, Weddings (weddings) 2 304885943 358545870
6003415393053 Children’s clothing (apparel) interests Shopping and fashion , Clothing (apparel) , Children’s clothing (apparel) 2 261869502 307958535
6003416777039 Horses (animals) interests Hobbies and activities, Pets (animals) , Horses (animals) 2 258434243 303918670
6003417378239 Plays (performing arts) interests Entertainment (leisure) , Live events (entertainment), Plays (performing arts) 2 205761207 241975180
6003420024431 French cuisine (food & drink) interests Food and drink (consumables) , Cuisine (food & drink) , French cuisine (food & drink) 2 89071692 104748310
6003420644631 Non-fiction books (publications) interests Entertainment (leisure) , Reading (communication) , Non-fiction books (publications) 2 36691106 43148741
6003422719241 Charity and causes (social causes) interests Hobbies and activities , Politics and social issues (politics), Charity and causes (social causes) 2 64685429 76070065
6003423342191 Dance (art) interests Hobbies and activities, Arts and music (art) , Dance (art) 2 545935068 642019640
6003423416540 Free software (software) interests Technology (computers & electronics), Computers (computers & electronics) , Free software (software) 2 561457967 660274570
6003424404140 Marathons (running event) interests Sports and outdoors , Sports (sports) , Marathons (running event) 2 189882514 223301837
6003430600057 Lakes (body of water) interests Hobbies and activities , Travel (travel & tourism), Lakes (body of water) 2 168765374 198468080
6003430696269 Tourism (industry) interests Hobbies and activities , Travel (travel & tourism), Tourism (industry) 2 773164277 909241190
6003431201869 Beaches (places) interests Hobbies and activities , Travel (travel & tourism), Beaches (places) 2 413340857 486088848
6003434373937 Browser games (video games) interests Entertainment (leisure) , Games (leisure) , Browser games (video games) 2 51808472 60926764
6003435096731 Barbecue (cooking) interests Food and drink (consumables), Food (food & drink) , Barbecue (cooking) 2 348044897 409300800
6003436950375 Restaurants (dining) interests Food and drink (consumables), Restaurants (dining) 2 730478154 859042310
6003443805331 Fragrances (cosmetics) interests Shopping and fashion , Beauty (social concept), Fragrances (cosmetics) 2 557077516 655123159
6003445506042 Marriage (weddings) interests Family and relationships, Marriage (weddings) 2 233638750 274759170
6003446055283 Scooters (vehicle) interests Hobbies and activities , Vehicles (transportation), Scooters (vehicle) 2 116142112 136583124
6003456330903 Hair products (hair care) interests Shopping and fashion , Beauty (social concept) , Hair products (hair care) 2 725744795 853475880
6003456388203 Clothing (apparel) interests Shopping and fashion, Clothing (apparel) 2 1151133418 1353732900
6003461162225 Pet food (pet supplies) interests Hobbies and activities , Pets (animals) , Pet food (pet supplies) 2 108416370 127497652
6003462707303 Books (publications) interests Entertainment (leisure), Reading (communication), Books (publications) 2 581479795 683820240
6003466585319 Online banking (banking) interests Business and industry , Banking (finance) , Online banking (banking) 2 90556292 106494200
6003470511564 Do it yourself (DIY) interests Hobbies and activities, Home and garden , Do it yourself (DIY) 2 418387661 492023890
6003473077165 Weight training (weightlifting) interests Fitness and wellness (fitness) , Weight training (weightlifting) 2 191719338 225461942
6003476182657 Family (social concept) interests Family and relationships, Family (social concept) 2 1029906930 1211170550
6003491283786 Tea (nonalcoholic beverage) interests Food and drink (consumables), Beverages (food & drink) , Tea (nonalcoholic beverage) 2 395174719 464725470
6003493980595 Country music (music) interests Entertainment (leisure) , Music (entertainment & media), Country music (music) 2 470572865 553393690
6003494675627 Indian cuisine (food & drink) interests Food and drink (consumables) , Cuisine (food & drink) , Indian cuisine (food & drink) 8 91538323 107649069
6003510075864 Golf (sport) interests Sports and outdoors, Sports (sports) , Golf (sport) 2 264069122 310545288
6003512053894 Snowboarding (skiing & snowboarding) interests Sports and outdoors , Sports (sports) , Snowboarding (skiing & snowboarding) 2 109337720 128581159
6003526234370 Online advertising (marketing) interests Business and industry , Online (computing) , Online advertising (marketing) 2 156407143 183934801
6003540150873 Sports games (video games) interests Entertainment (leisure) , Games (leisure) , Sports games (video games) 2 167944091 197502252
6003572379887 Hotels (lodging) interests Hobbies and activities , Travel (travel & tourism), Hotels (lodging) 2 603371853 709565300
6003578086487 Real estate (industry) interests Business and industry , Real estate (industry) 2 424648647 499386810
6003582500438 Strategy games (games) interests Entertainment (leisure), Games (leisure) , Strategy games (games) 2 57279099 67360221
6003582732907 Rock music (music) interests Entertainment (leisure) , Music (entertainment & media), Rock music (music) 2 959474906 1128342490
6003584163107 Advertising (marketing) interests Business and industry , Advertising (marketing) 2 465943911 547950040
6003586608473 Writing (communication) interests Hobbies and activities , Arts and music (art) , Writing (communication) 2 341526028 401634610
6003605717820 Anime movies (movies) interests Entertainment (leisure) , Movies (entertainment & media), Anime movies (movies) 2 385607074 453473920
6003626773307 Coffee (food & drink) interests Food and drink (consumables), Beverages (food & drink) , Coffee (food & drink) 2 535770493 630066100
6003629266583 Hard drives (computer hardware) interests Technology (computers & electronics), Computers (computers & electronics) , Hard drives (computer hardware) 2 122281267 143802770
6003633122583 Heavy metal music (music) interests Entertainment (leisure) , Music (entertainment & media), Heavy metal music (music) 2 603639736 709880330
6003641846820 Veganism (diets) interests Food and drink (consumables), Food (food & drink) , Veganism (diets) 2 324563265 381686400
6003647522546 Card games (games) interests Entertainment (leisure), Games (leisure) , Card games (games) 2 272395153 320336700
6003648059946 Bodybuilding (sport) interests Fitness and wellness (fitness), Bodybuilding (sport) 2 196138179 230658499
6003649983713 Design (design) interests Business and industry, Design (design) 2 920081998 1082016430
6003654559478 Politics (politics) interests Hobbies and activities , Politics and social issues (politics), Politics (politics) 8 460704668 541788690
6003656112304 Economics (economics) interests Business and industry, Economics (economics) 2 308751105 363091300
6003656296104 Network storage (computers & electronics) interests Technology (computers & electronics) , Computers (computers & electronics) , Network storage (computers & electronics) 2 18677605 21964864
6003656922020 Horror movies (movies) interests Entertainment (leisure) , Movies (entertainment & media), Horror movies (movies) 2 376549897 442822680
6003659420716 Cooking (food & drink) interests Food and drink (consumables), Cooking (food & drink) 2 752634277 885097910
6003668857118 Pizza (food & drink) interests Food and drink (consumables), Food (food & drink) , Pizza (food & drink) 2 441634838 519362570
6003668975718 Puzzle video games (video games) interests Entertainment (leisure) , Games (leisure) , Puzzle video games (video games) 2 288117984 338826750
6003703762913 Law (law & legal services) interests Hobbies and activities , Politics and social issues (politics), Law (law & legal services) 8 477592806 561649140
6003703931713 Juice (nonalcoholic beverage) interests Food and drink (consumables) , Beverages (food & drink) , Juice (nonalcoholic beverage) 2 223882925 263286320
6003716669862 Consumer electronics (computers & electronics) interests Technology (computers & electronics) , Consumer electronics (computers & electronics) 2 1380321853 1623258500
6003717247746 Sculpture (art) interests Hobbies and activities, Arts and music (art) , Sculpture (art) 2 132166649 155427980
6003717914546 Hybrids (vehicle) interests Hobbies and activities , Vehicles (transportation), Hybrids (vehicle) 2 63554330 74739893
6003729124262 Audio equipment (electronics) interests Technology (computers & electronics) , Consumer electronics (computers & electronics), Audio equipment (electronics) 2 43983308 51724371
6003778400853 Retail (industry) interests Business and industry, Retail (industry) 2 713008299 838497760
6003779859852 Horseback riding (horse sport) interests Sports and outdoors , Outdoor recreation (outdoors activities), Horseback riding (horse sport) 2 102889171 120997666
6003780008652 Online (computing) interests Business and industry, Online (computing) 2 1148217236 1350303470
6003780025252 Drawing (visual art) interests Hobbies and activities, Arts and music (art) , Drawing (visual art) 2 198107763 232974730
6003840140052 Agriculture (industry) interests Business and industry , Agriculture (industry) 2 389563392 458126550
6003899195666 Photography (visual art) interests Hobbies and activities , Arts and music (art) , Photography (visual art) 2 1117351836 1314005760
6003902397066 Electronic music (music) interests Entertainment (leisure) , Music (entertainment & media), Electronic music (music) 2 763266700 897601640
6003902462066 Theme parks (leisure) interests Hobbies and activities , Travel (travel & tourism), Theme parks (leisure) 2 199474285 234581760
6003940339466 Video games (gaming) interests Entertainment (leisure), Games (leisure) , Video games (gaming) 2 946113469 1112629440
6003985771306 Technology (computers & electronics) interests Technology (computers & electronics) 2 1510784438 1776682500
6004030160948 Social media (online media) interests Business and industry , Online (computing) , Social media (online media) 2 633785255 745331460
6004037107009 Boats (watercraft) interests Hobbies and activities , Vehicles (transportation), Boats (watercraft) 2 145653103 171288050
6004037400009 Fast food (food & drink) interests Food and drink (consumables), Food (food & drink) , Fast food (food & drink) 2 445818967 524283106
6004037726009 Pets (animals) interests Hobbies and activities, Pets (animals) 2 895994081 1053689040
6004037932409 Management (business & finance) interests Business and industry , Management (business & finance) 2 332392721 390893840
6004043913548 Newspapers (publications) interests Entertainment (leisure) , Reading (communication) , Newspapers (publications) 2 815218979 958697520
6004094205989 German cuisine (food & drink) interests Food and drink (consumables) , Cuisine (food & drink) , German cuisine (food & drink) 8 29112772 34236620
6004100985609 Friendship (relationships) interests Family and relationships , Friendship (relationships) 2 716429413 842520990
6004115167424 Physical exercise (fitness) interests Fitness and wellness (fitness), Physical exercise (fitness) 2 646978494 760846710
6004140335706 Architecture (architecture) interests Business and industry , Architecture (architecture) 2 433894345 510259750
6004160395895 Travel (travel & tourism) interests Hobbies and activities , Travel (travel & tourism) 2 1172422168 1378768470
6005609368513 Software (computers & electronics) interests Technology (computers & electronics), Computers (computers & electronics) , Software (computers & electronics) 2 925583622 1088486340
6007828099136 Luxury goods (retail) interests Shopping and fashion , Shopping (retail) , Luxury goods (retail) 2 673653435 792216440
6008832464480 E-book readers (consumer electronics) interests Technology (computers & electronics) , Consumer electronics (computers & electronics), E-book readers (consumer electronics) 2 45626557 53656832
6009248606271 Food and drink (consumables) interests Food and drink (consumables) 2 1347509744 1584671460
6010924093432 Live events (entertainment) interests Entertainment (leisure) , Live events (entertainment) 2 955524030 1123696260
6011366104268 Women’s clothing (apparel) interests Shopping and fashion , Clothing (apparel) , Women’s clothing (apparel) 2 598187925 703469000
6011515350975 Politics and social issues (politics) interests Hobbies and activities , Politics and social issues (politics) 8 1046674914 1230889700
6011994253127 Men’s clothing (apparel) interests Shopping and fashion , Clothing (apparel) , Men’s clothing (apparel) 2 455533027 535706840

job_titles_df <- get_fb_parameter_ids(type    = "work_positions",
                                      version = VERSION, 
                                      token   = TOKEN,
                                      q = "data")

job_titles_df %>% 
  kable() %>% 
  kable_styling() %>% 
  scroll_box(width = "100%",
             height = "300px")
id name coverage_lower_bound coverage_upper_bound subtext
107995062561111 Data entry clerk 93060 109439 NA
431299473579193 Data science 14659 17240 NA
103088336397390 Data Architect 6984 8214 NA
6914363428 ADP 119 141 NA
117496231707441 NTT DATA North America 13 16 Plano, TX, US
268835395007 Datamatics 9 11 Datamatics · Mumbai, Maharashtra, India
112076745475038 Database design 6 8 NA
361773733939664 Tech Data Corporation 2 3 Singapore, Singapore
182402158477555 Dimension Data Asia Pacific 1 2 Singapore, Singapore
112383832111981 Hitachi Data Systems 1 2 NA

Location Key

Users can be targeted by different types of locations, including all users within a country, region (e.g., US state), city, neighborhood, etc. The get_fb_parameter_ids is used to obtain the location key for different places. The type parameter is used to define the type of location (e.g., "country", "region", etc.).

In addition to type, the country_code, region_id, key and q parameters can be used to further refine searchers for locations. Providing an input for country_code, region_id, and key (e.g., city key), will search for locations within those larger locations. Providing an input to the q parameter limits the search by name. For smaller geographic regions, an input for q is required.

country_group_df <- get_fb_parameter_ids(type    = "country_group",
                                         version = VERSION, 
                                         token   = TOKEN)

country_df <- get_fb_parameter_ids(type    = "country",
                                   version = VERSION, 
                                   token   = TOKEN)

us_states_df <- get_fb_parameter_ids(type    = "region",
                                     version = VERSION, 
                                     token   = TOKEN,
                                     country_code = "US")

ny_key <- us_states_df %>% filter(name == "New York") %>% pull(key) 
ny_cities_df <- get_fb_parameter_ids(type    = "city",
                                     version = VERSION, 
                                     token   = TOKEN,
                                     region_id = ny_key,
                                     q = "New York")

ny_cities_df %>% 
  kable() %>% 
  kable_styling() %>% 
  scroll_box(width = "100%",
             height = "300px")
key name type country_code country_name region region_id supports_region supports_city geo_hierarchy_level geo_hierarchy_name
2490299 New York city US United States New York 3875 TRUE TRUE NA NA
2490629 Otego city US United States New York 3875 TRUE TRUE NA NA
2488053 Delanson city US United States New York 3875 TRUE TRUE NA NA
2491852 Summit city US United States New York 3875 TRUE TRUE NA NA
2488965 Hadley city US United States New York 3875 TRUE TRUE NA NA
2492286 Wellsburg city US United States New York 3875 TRUE TRUE NA NA
2491500 Sinclairville city US United States New York 3875 TRUE TRUE NA NA
2489582 Lake Success city US United States New York 3875 TRUE TRUE NA NA
2490154 Morristown city US United States New York 3875 TRUE TRUE NA NA
2490567 Old Westbury city US United States New York 3875 TRUE TRUE NA NA
2490076 Millwood city US United States New York 3875 TRUE TRUE NA NA
2490463 North Salem city US United States New York 3875 TRUE TRUE NA NA
2487428 Brushton city US United States New York 3875 TRUE TRUE NA NA
2491249 Rushville city US United States New York 3875 TRUE TRUE NA NA
2490095 Modena city US United States New York 3875 TRUE TRUE NA NA
2490334 Nissequogue city US United States New York 3875 TRUE TRUE NA NA
2488037 Deansboro city US United States New York 3875 TRUE TRUE NA NA
2491482 Shushan city US United States New York 3875 TRUE TRUE NA NA
2492587 Woodbourne city US United States New York 3875 TRUE TRUE NA NA
2491349 Schenevus city US United States New York 3875 TRUE TRUE NA NA
2490040 Middleville city US United States New York 3875 TRUE TRUE NA NA
2488915 Greenwood city US United States New York 3875 TRUE TRUE NA NA
2490148 Morris city US United States New York 3875 TRUE TRUE NA NA
2492015 Troupsburg city US United States New York 3875 TRUE TRUE NA NA
2488236 East Greenbush city US United States New York 3875 TRUE TRUE NA NA
2490930 Port Jervis city US United States New York 3875 TRUE TRUE NA NA
2489403 Johnson City city US United States New York 3875 TRUE TRUE NA NA
2488187 East Aurora city US United States New York 3875 TRUE TRUE NA NA
2488309 East Setauket city US United States New York 3875 TRUE TRUE NA NA
2492599 Woodridge city US United States New York 3875 TRUE TRUE NA NA
2489120 Henderson city US United States New York 3875 TRUE TRUE NA NA
2488733 Gates subcity US United States New York 3875 TRUE TRUE SUBCITY CITY
2487596 Cayuga city US United States New York 3875 TRUE TRUE NA NA
2487589 Caton city US United States New York 3875 TRUE TRUE NA NA
2492233 Wassaic city US United States New York 3875 TRUE TRUE NA NA
2489375 Jasper city US United States New York 3875 TRUE TRUE NA NA
2492466 Westtown city US United States New York 3875 TRUE TRUE NA NA
2490695 Parishville city US United States New York 3875 TRUE TRUE NA NA
2487849 Constable city US United States New York 3875 TRUE TRUE NA NA
2487456 Burdett city US United States New York 3875 TRUE TRUE NA NA
2487011 Ava city US United States New York 3875 TRUE TRUE NA NA
2488687 Fultonville city US United States New York 3875 TRUE TRUE NA NA
2488119 Downsville city US United States New York 3875 TRUE TRUE NA NA
2488558 Floral Park city US United States New York 3875 TRUE TRUE NA NA
2487574 Cassville city US United States New York 3875 TRUE TRUE NA NA
2487277 Bloomingburg city US United States New York 3875 TRUE TRUE NA NA
2491064 Redfield city US United States New York 3875 TRUE TRUE NA NA
2491251 Russell city US United States New York 3875 TRUE TRUE NA NA
2488767 Gilbertsville city US United States New York 3875 TRUE TRUE NA NA
2487531 Canaseraga city US United States New York 3875 TRUE TRUE NA NA
2487599 Cayuta city US United States New York 3875 TRUE TRUE NA NA
2487851 Constantia city US United States New York 3875 TRUE TRUE NA NA
2491829 Stratford city US United States New York 3875 TRUE TRUE NA NA
2487081 Barneveld city US United States New York 3875 TRUE TRUE NA NA
2488658 Freeville city US United States New York 3875 TRUE TRUE NA NA
2489038 Harford city US United States New York 3875 TRUE TRUE NA NA
2491730 Spring Valley city US United States New York 3875 TRUE TRUE NA NA
2489685 Limestone city US United States New York 3875 TRUE TRUE NA NA
2673869 Fort Drum city US United States New York 3875 TRUE TRUE NA NA
2489459 Kennedy city US United States New York 3875 TRUE TRUE NA NA
2480661 Grand Island city US United States New York 3875 TRUE TRUE NA NA
2491384 Sea Cliff city US United States New York 3875 TRUE TRUE NA NA
2488269 East Massapequa city US United States New York 3875 TRUE TRUE NA NA
2489935 Masonville city US United States New York 3875 TRUE TRUE NA NA
2491277 Saint James city US United States New York 3875 TRUE TRUE NA NA
2491248 Rushford city US United States New York 3875 TRUE TRUE NA NA
2487960 Croton-on-Hudson city US United States New York 3875 TRUE TRUE NA NA
2488253 East Islip city US United States New York 3875 TRUE TRUE NA NA
2488184 East Amherst city US United States New York 3875 TRUE TRUE NA NA
2491515 Sleepy Hollow city US United States New York 3875 TRUE TRUE NA NA
2489009 Hampton Bays city US United States New York 3875 TRUE TRUE NA NA
2490597 Oran subcity US United States New York 3875 TRUE TRUE SUBCITY CITY
2487637 Central Square city US United States New York 3875 TRUE TRUE NA NA
2490360 North Bellport city US United States New York 3875 TRUE TRUE NA NA
2488279 East Northport city US United States New York 3875 TRUE TRUE NA NA
2487580 Castorland city US United States New York 3875 TRUE TRUE NA NA
2488449 Esperance city US United States New York 3875 TRUE TRUE NA NA
2491822 Stony Point city US United States New York 3875 TRUE TRUE NA NA
2487334 Bradford city US United States New York 3875 TRUE TRUE NA NA
2489938 Massapequa Park city US United States New York 3875 TRUE TRUE NA NA
2488951 Guilford city US United States New York 3875 TRUE TRUE NA NA
2488288 East Patchogue city US United States New York 3875 TRUE TRUE NA NA
2490561 Old Forge city US United States New York 3875 TRUE TRUE NA NA
2489347 Island Park city US United States New York 3875 TRUE TRUE NA NA
2490824 Pine Bush city US United States New York 3875 TRUE TRUE NA NA
2489565 Lake Grove city US United States New York 3875 TRUE TRUE NA NA
2489747 Locust Valley city US United States New York 3875 TRUE TRUE NA NA
2488274 East Moriches city US United States New York 3875 TRUE TRUE NA NA
2490070 Millport city US United States New York 3875 TRUE TRUE NA NA
2488301 East Rochester city US United States New York 3875 TRUE TRUE NA NA
2491001 Putnam Valley city US United States New York 3875 TRUE TRUE NA NA
2489877 Mannsville city US United States New York 3875 TRUE TRUE NA NA
2490351 North Babylon city US United States New York 3875 TRUE TRUE NA NA
2488643 Franklin Square city US United States New York 3875 TRUE TRUE NA NA
2490088 Mineville city US United States New York 3875 TRUE TRUE NA NA
2491818 Stony Brook city US United States New York 3875 TRUE TRUE NA NA
2490569 Olivebridge city US United States New York 3875 TRUE TRUE NA NA
2487366 Briarcliff Manor city US United States New York 3875 TRUE TRUE NA NA
2492453 Westernville city US United States New York 3875 TRUE TRUE NA NA
2490177 Mount Kisco city US United States New York 3875 TRUE TRUE NA NA
2490957 Pound Ridge city US United States New York 3875 TRUE TRUE NA NA
2490002 Memphis city US United States New York 3875 TRUE TRUE NA NA
2492376 West Islip city US United States New York 3875 TRUE TRUE NA NA
2489047 Harpursville city US United States New York 3875 TRUE TRUE NA NA
2489080 Hastings-on-Hudson city US United States New York 3875 TRUE TRUE NA NA
2487057 Ballston Spa city US United States New York 3875 TRUE TRUE NA NA
2488829 Gorham city US United States New York 3875 TRUE TRUE NA NA
2489782 Loudonville city US United States New York 3875 TRUE TRUE NA NA
2489330 Ireland Corners subcity US United States New York 3875 TRUE TRUE SUBCITY CITY
2492370 West Hempstead city US United States New York 3875 TRUE TRUE NA NA
2490039 Middletown, Orange County city US United States New York 3875 TRUE TRUE NA NA
2489581 Lake Ronkonkoma city US United States New York 3875 TRUE TRUE NA NA
2487742 Clayville city US United States New York 3875 TRUE TRUE NA NA
2489496 Kings Point city US United States New York 3875 TRUE TRUE NA NA
2491325 Saranac Lake city US United States New York 3875 TRUE TRUE NA NA
2492251 Watkins Glen city US United States New York 3875 TRUE TRUE NA NA
2492220 Wappingers Falls city US United States New York 3875 TRUE TRUE NA NA
2490741 Pearl River city US United States New York 3875 TRUE TRUE NA NA
2490765 Penn Yan city US United States New York 3875 TRUE TRUE NA NA
2487718 Circleville city US United States New York 3875 TRUE TRUE NA NA
2488874 Great Neck city US United States New York 3875 TRUE TRUE NA NA
2491634 South Huntington city US United States New York 3875 TRUE TRUE NA NA
2489160 Highland Falls city US United States New York 3875 TRUE TRUE NA NA
2488520 Fire Island city US United States New York 3875 TRUE TRUE NA NA
2490038 Middlesex city US United States New York 3875 TRUE TRUE NA NA
2487592 Cattaraugus city US United States New York 3875 TRUE TRUE NA NA
2491267 Sag Harbor city US United States New York 3875 TRUE TRUE NA NA
2490732 Pavilion city US United States New York 3875 TRUE TRUE NA NA
2491334 Savona city US United States New York 3875 TRUE TRUE NA NA
2488673 Friendship city US United States New York 3875 TRUE TRUE NA NA
2488510 Fillmore city US United States New York 3875 TRUE TRUE NA NA
2489213 Honeoye city US United States New York 3875 TRUE TRUE NA NA
2487775 Clymer city US United States New York 3875 TRUE TRUE NA NA
2490547 Odessa city US United States New York 3875 TRUE TRUE NA NA
2490920 Port Chester city US United States New York 3875 TRUE TRUE NA NA
2488970 Hague city US United States New York 3875 TRUE TRUE NA NA
2491068 Redwood city US United States New York 3875 TRUE TRUE NA NA
2488732 Gasport city US United States New York 3875 TRUE TRUE NA NA
2488224 East Fishkill city US United States New York 3875 TRUE TRUE NA NA
2490595 Oppenheim city US United States New York 3875 TRUE TRUE NA NA
2491378 Scottsville city US United States New York 3875 TRUE TRUE NA NA
2490631 Otisco subcity US United States New York 3875 TRUE TRUE SUBCITY CITY
2488757 Ghent city US United States New York 3875 TRUE TRUE NA NA
2487168 Bellerose city US United States New York 3875 TRUE TRUE NA NA
2488754 Gerry city US United States New York 3875 TRUE TRUE NA NA
2489385 Jeffersonville city US United States New York 3875 TRUE TRUE NA NA
2487370 Bridgeport city US United States New York 3875 TRUE TRUE NA NA
2489915 Marion city US United States New York 3875 TRUE TRUE NA NA
2487850 Constableville city US United States New York 3875 TRUE TRUE NA NA
2488371 Edmeston city US United States New York 3875 TRUE TRUE NA NA
2492465 Westport city US United States New York 3875 TRUE TRUE NA NA
2492460 Westmoreland city US United States New York 3875 TRUE TRUE NA NA
2491332 Savannah city US United States New York 3875 TRUE TRUE NA NA
2487160 Belfast city US United States New York 3875 TRUE TRUE NA NA
2487573 Cassadaga city US United States New York 3875 TRUE TRUE NA NA
2490236 Nedrow city US United States New York 3875 TRUE TRUE NA NA
2487774 Clyde city US United States New York 3875 TRUE TRUE NA NA
2488317 East Syracuse city US United States New York 3875 TRUE TRUE NA NA
2492302 West Babylon city US United States New York 3875 TRUE TRUE NA NA
2490786 Petersburg city US United States New York 3875 TRUE TRUE NA NA
2490766 Pennellville city US United States New York 3875 TRUE TRUE NA NA
2487549 Carle Place city US United States New York 3875 TRUE TRUE NA NA
2488141 Dundee city US United States New York 3875 TRUE TRUE NA NA
2492425 West Seneca city US United States New York 3875 TRUE TRUE NA NA
2491749 Stafford city US United States New York 3875 TRUE TRUE NA NA
2489414 Jordan city US United States New York 3875 TRUE TRUE NA NA
2487669 Chazy city US United States New York 3875 TRUE TRUE NA NA
2487348 Brant city US United States New York 3875 TRUE TRUE NA NA
2487755 Clifton Park city US United States New York 3875 TRUE TRUE NA NA
2489470 Kerhonkson city US United States New York 3875 TRUE TRUE NA NA
2488473 Falconer city US United States New York 3875 TRUE TRUE NA NA
2489183 Hinsdale city US United States New York 3875 TRUE TRUE NA NA
2491463 Shokan city US United States New York 3875 TRUE TRUE NA NA
2490508 Norwood city US United States New York 3875 TRUE TRUE NA NA
2492401 West Nyack city US United States New York 3875 TRUE TRUE NA NA
2491363 Scio city US United States New York 3875 TRUE TRUE NA NA
2487383 Bristol city US United States New York 3875 TRUE TRUE NA NA
2490445 North New Hyde Park city US United States New York 3875 TRUE TRUE NA NA
2488101 Dix Hills city US United States New York 3875 TRUE TRUE NA NA
2490045 Milan city US United States New York 3875 TRUE TRUE NA NA
2488565 Floyd city US United States New York 3875 TRUE TRUE NA NA
2486900 Altmar city US United States New York 3875 TRUE TRUE NA NA
2486961 Arkport city US United States New York 3875 TRUE TRUE NA NA
2490086 Minerva city US United States New York 3875 TRUE TRUE NA NA
2489203 Holley city US United States New York 3875 TRUE TRUE NA NA
2492148 Verona city US United States New York 3875 TRUE TRUE NA NA
2492110 Valley Cottage city US United States New York 3875 TRUE TRUE NA NA
2489352 Italy city US United States New York 3875 TRUE TRUE NA NA
2492549 Willsboro city US United States New York 3875 TRUE TRUE NA NA
2489830 Machias city US United States New York 3875 TRUE TRUE NA NA
2489186 Hobart city US United States New York 3875 TRUE TRUE NA NA
2488775 Glasco city US United States New York 3875 TRUE TRUE NA NA
2489948 Maybrook city US United States New York 3875 TRUE TRUE NA NA
2487747 Cleveland city US United States New York 3875 TRUE TRUE NA NA
2489058 Harrisville city US United States New York 3875 TRUE TRUE NA NA
2489815 Lyndonville city US United States New York 3875 TRUE TRUE NA NA
2488967 Hagaman city US United States New York 3875 TRUE TRUE NA NA
2487723 Clarendon city US United States New York 3875 TRUE TRUE NA NA
2491739 Springwater city US United States New York 3875 TRUE TRUE NA NA
2489592 Lakeview city US United States New York 3875 TRUE TRUE NA NA
2488103 Dobbs Ferry city US United States New York 3875 TRUE TRUE NA NA
2489004 Hammond city US United States New York 3875 TRUE TRUE NA NA
2489294 Hurleyville city US United States New York 3875 TRUE TRUE NA NA
2491837 Stuyvesant city US United States New York 3875 TRUE TRUE NA NA
2491474 Shortsville city US United States New York 3875 TRUE TRUE NA NA
2491747 Staatsburg city US United States New York 3875 TRUE TRUE NA NA
2491967 Tillson city US United States New York 3875 TRUE TRUE NA NA
2490607 Orient city US United States New York 3875 TRUE TRUE NA NA
2490614 Orleans subcity US United States New York 3875 TRUE TRUE SUBCITY CITY
2490202 Mumford city US United States New York 3875 TRUE TRUE NA NA
2487482 Busti subcity US United States New York 3875 TRUE TRUE SUBCITY CITY
2490554 Old Bethpage city US United States New York 3875 TRUE TRUE NA NA
2489298 Hyde Park city US United States New York 3875 TRUE TRUE NA NA
2489068 Hartwick city US United States New York 3875 TRUE TRUE NA NA
2490645 Ovid city US United States New York 3875 TRUE TRUE NA NA
2490965 Prattsville city US United States New York 3875 TRUE TRUE NA NA
2487883 Corfu city US United States New York 3875 TRUE TRUE NA NA
2489699 Lindley city US United States New York 3875 TRUE TRUE NA NA
2489381 Jefferson city US United States New York 3875 TRUE TRUE NA NA
2489962 McDonough city US United States New York 3875 TRUE TRUE NA NA
2487713 Churchville city US United States New York 3875 TRUE TRUE NA NA
2486920 Ancram city US United States New York 3875 TRUE TRUE NA NA
2488084 Dexter city US United States New York 3875 TRUE TRUE NA NA
2488054 Delevan city US United States New York 3875 TRUE TRUE NA NA
2492024 Truxton city US United States New York 3875 TRUE TRUE NA NA
2487090 Barryville city US United States New York 3875 TRUE TRUE NA NA
2487821 Colton city US United States New York 3875 TRUE TRUE NA NA
2488552 Fleischmanns city US United States New York 3875 TRUE TRUE NA NA
2487765 Clintondale city US United States New York 3875 TRUE TRUE NA NA
2487110 Bay Shore city US United States New York 3875 TRUE TRUE NA NA
2491077 Remsenburg city US United States New York 3875 TRUE TRUE NA NA
2487831 Conesus city US United States New York 3875 TRUE TRUE NA NA
2492617 Worcester city US United States New York 3875 TRUE TRUE NA NA
2487393 Brocton city US United States New York 3875 TRUE TRUE NA NA
2490335 Niverville city US United States New York 3875 TRUE TRUE NA NA
2489738 Locke city US United States New York 3875 TRUE TRUE NA NA
2489544 Lacona city US United States New York 3875 TRUE TRUE NA NA
2489655 Leon subcity US United States New York 3875 TRUE TRUE SUBCITY CITY
2492152 Verplanck city US United States New York 3875 TRUE TRUE NA NA
2487619 Celoron city US United States New York 3875 TRUE TRUE NA NA
2489135 Heuvelton city US United States New York 3875 TRUE TRUE NA NA
2488941 Groveland city US United States New York 3875 TRUE TRUE NA NA
2490222 Napanoch city US United States New York 3875 TRUE TRUE NA NA
2488768 Gilboa city US United States New York 3875 TRUE TRUE NA NA
2487056 Ballston Lake city US United States New York 3875 TRUE TRUE NA NA
2489639 Leeds city US United States New York 3875 TRUE TRUE NA NA
2488398 Ellington city US United States New York 3875 TRUE TRUE NA NA
2491193 Romulus city US United States New York 3875 TRUE TRUE NA NA
2490967 Preble city US United States New York 3875 TRUE TRUE NA NA
2491134 Ripley city US United States New York 3875 TRUE TRUE NA NA
2486876 Alexandria Bay city US United States New York 3875 TRUE TRUE NA NA
2489495 Kings Park city US United States New York 3875 TRUE TRUE NA NA
2489577 Lake Placid city US United States New York 3875 TRUE TRUE NA NA
2488455 Evans Mills city US United States New York 3875 TRUE TRUE NA NA
2492324 West Carthage city US United States New York 3875 TRUE TRUE NA NA
2492443 West Winfield city US United States New York 3875 TRUE TRUE NA NA
2490929 Port Jefferson Station city US United States New York 3875 TRUE TRUE NA NA
2491547 Snyder city US United States New York 3875 TRUE TRUE NA NA
2490926 Port Henry city US United States New York 3875 TRUE TRUE NA NA
2490919 Port Byron city US United States New York 3875 TRUE TRUE NA NA
2491796 Stewart Manor city US United States New York 3875 TRUE TRUE NA NA
2487727 Clark Mills city US United States New York 3875 TRUE TRUE NA NA
2488118 Dover Plains city US United States New York 3875 TRUE TRUE NA NA
2488609 Fort Montgomery city US United States New York 3875 TRUE TRUE NA NA
2491601 South Corning city US United States New York 3875 TRUE TRUE NA NA
2490835 Pine Plains city US United States New York 3875 TRUE TRUE NA NA
2490356 North Bay Shore city US United States New York 3875 TRUE TRUE NA NA
2489867 Manhasset Hills city US United States New York 3875 TRUE TRUE NA NA
2492083 Upper Brookville city US United States New York 3875 TRUE TRUE NA NA
2491765 Star Lake city US United States New York 3875 TRUE TRUE NA NA
2491606 South Dayton city US United States New York 3875 TRUE TRUE NA NA
2488713 Garden City South city US United States New York 3875 TRUE TRUE NA NA
2487794 Cold Spring Harbor city US United States New York 3875 TRUE TRUE NA NA
2487255 Black River city US United States New York 3875 TRUE TRUE NA NA
2488712 Garden City Park city US United States New York 3875 TRUE TRUE NA NA
2491629 South Hempstead city US United States New York 3875 TRUE TRUE NA NA
2490446 North Norwich city US United States New York 3875 TRUE TRUE NA NA
2488531 Fishers Island city US United States New York 3875 TRUE TRUE NA NA
2491054 Red Creek city US United States New York 3875 TRUE TRUE NA NA
2492312 West Bloomfield city US United States New York 3875 TRUE TRUE NA NA
2490612 Oriskany Falls city US United States New York 3875 TRUE TRUE NA NA
2489756 Lonelyville subcity US United States New York 3875 TRUE TRUE SUBCITY CITY
2489733 Lloyd Harbor city US United States New York 3875 TRUE TRUE NA NA
2491617 South Glens Falls city US United States New York 3875 TRUE TRUE NA NA
2488879 Great Valley city US United States New York 3875 TRUE TRUE NA NA
2487757 Clifton Springs city US United States New York 3875 TRUE TRUE NA NA
2487185 Bemus Point city US United States New York 3875 TRUE TRUE NA NA
2486840 Adams Center city US United States New York 3875 TRUE TRUE NA NA
2490924 Port Ewen city US United States New York 3875 TRUE TRUE NA NA
2490555 Old Brookville city US United States New York 3875 TRUE TRUE NA NA
2489736 Loch Sheldrake city US United States New York 3875 TRUE TRUE NA NA
2491234 Rouses Point city US United States New York 3875 TRUE TRUE NA NA
2492073 Union Springs city US United States New York 3875 TRUE TRUE NA NA
2489477 Keuka Park city US United States New York 3875 TRUE TRUE NA NA
2489621 Laurel Hollow city US United States New York 3875 TRUE TRUE NA NA
2490366 North Boston city US United States New York 3875 TRUE TRUE NA NA
2492445 Westbrookville city US United States New York 3875 TRUE TRUE NA NA
2491716 Speonk city US United States New York 3875 TRUE TRUE NA NA
2487579 Castleton-on-Hudson city US United States New York 3875 TRUE TRUE NA NA
2491819 Stony Creek city US United States New York 3875 TRUE TRUE NA NA
2491555 Sodus Point city US United States New York 3875 TRUE TRUE NA NA
2489539 La Fargeville city US United States New York 3875 TRUE TRUE NA NA
2492494 White Lake city US United States New York 3875 TRUE TRUE NA NA
2492346 West Elmira city US United States New York 3875 TRUE TRUE NA NA
2492089 Upper Nyack city US United States New York 3875 TRUE TRUE NA NA
2490730 Paul Smiths city US United States New York 3875 TRUE TRUE NA NA
2491651 South Nyack city US United States New York 3875 TRUE TRUE NA NA
2488597 Fort Covington city US United States New York 3875 TRUE TRUE NA NA
2487464 Burlington Flats city US United States New York 3875 TRUE TRUE NA NA
2491612 South Fallsburg city US United States New York 3875 TRUE TRUE NA NA
2489585 Lake View city US United States New York 3875 TRUE TRUE NA NA
2486994 Atlantic Beach city US United States New York 3875 TRUE TRUE NA NA
2489202 Holland Patent city US United States New York 3875 TRUE TRUE NA NA
2488828 Gordon Heights city US United States New York 3875 TRUE TRUE NA NA
2491512 Slate Hill city US United States New York 3875 TRUE TRUE NA NA
2491493 Silver Creek city US United States New York 3875 TRUE TRUE NA NA
2491614 South Floral Park city US United States New York 3875 TRUE TRUE NA NA
2492111 Valley Falls city US United States New York 3875 TRUE TRUE NA NA
2492421 West Sand Lake city US United States New York 3875 TRUE TRUE NA NA
2492306 West Batavia subcity US United States New York 3875 TRUE TRUE SUBCITY CITY
2489139 Hewlett Harbor city US United States New York 3875 TRUE TRUE NA NA
2487284 Blue Mountain Lake city US United States New York 3875 TRUE TRUE NA NA
2490825 Pine City city US United States New York 3875 TRUE TRUE NA NA
2490454 North Pole subcity US United States New York 3875 TRUE TRUE SUBCITY CITY
2489817 Lyon Mountain city US United States New York 3875 TRUE TRUE NA NA
2487676 Chenango Forks city US United States New York 3875 TRUE TRUE NA NA
2487003 Au Sable Forks city US United States New York 3875 TRUE TRUE NA NA
2491035 Raquette Lake city US United States New York 3875 TRUE TRUE NA NA
2486879 Alfred Station city US United States New York 3875 TRUE TRUE NA NA
2492441 West Webster city US United States New York 3875 TRUE TRUE NA NA
2489282 Huntington Bay city US United States New York 3875 TRUE TRUE NA NA
2490188 Mount Upton city US United States New York 3875 TRUE TRUE NA NA
2488843 Grand Gorge city US United States New York 3875 TRUE TRUE NA NA
2488196 East Bethany city US United States New York 3875 TRUE TRUE NA NA
2487132 Beaver Falls city US United States New York 3875 TRUE TRUE NA NA
2491503 Skaneateles Falls city US United States New York 3875 TRUE TRUE NA NA
2492422 West Saugerties subcity US United States New York 3875 TRUE TRUE SUBCITY CITY
2490943 Porter Corners city US United States New York 3875 TRUE TRUE NA NA
2491162 Rock City Falls city US United States New York 3875 TRUE TRUE NA NA
2491842 Sugar Loaf subcity US United States New York 3875 TRUE TRUE SUBCITY CITY
2486929 Angola on the Lake city US United States New York 3875 TRUE TRUE NA NA
2492366 West Hampton Dunes city US United States New York 3875 TRUE TRUE NA NA
2491957 Three Mile Bay city US United States New York 3875 TRUE TRUE NA NA
2490485 North White Plains city US United States New York 3875 TRUE TRUE NA NA
2491443 Shelter Island Heights city US United States New York 3875 TRUE TRUE NA NA
2491081 Rensselaer Falls city US United States New York 3875 TRUE TRUE NA NA
2492439 West Valley city US United States New York 3875 TRUE TRUE NA NA
2488275 East Nassau city US United States New York 3875 TRUE TRUE NA NA
2492202 Walker Valley city US United States New York 3875 TRUE TRUE NA NA
2487760 Clinton Corners city US United States New York 3875 TRUE TRUE NA NA
2491496 Silver Springs city US United States New York 3875 TRUE TRUE NA NA
2490231 Natural Bridge city US United States New York 3875 TRUE TRUE NA NA
2487352 Brasher Falls city US United States New York 3875 TRUE TRUE NA NA
2488333 East Williston city US United States New York 3875 TRUE TRUE NA NA
2487344 Branchport city US United States New York 3875 TRUE TRUE NA NA
2490478 North Valley Stream city US United States New York 3875 TRUE TRUE NA NA
2492011 Tribes Hill city US United States New York 3875 TRUE TRUE NA NA
2490672 Palatine Bridge city US United States New York 3875 TRUE TRUE NA NA
2492043 Tuxedo Park city US United States New York 3875 TRUE TRUE NA NA
2491678 South Valley Stream city US United States New York 3875 TRUE TRUE NA NA
2491297 Salt Point city US United States New York 3875 TRUE TRUE NA NA
2490921 Port Crane city US United States New York 3875 TRUE TRUE NA NA
2486933 Annandale-on-Hudson subcity US United States New York 3875 TRUE TRUE SUBCITY CITY
2490558 Old Chatham city US United States New York 3875 TRUE TRUE NA NA
2490460 North Rose city US United States New York 3875 TRUE TRUE NA NA
2491986 Tomkins Cove city US United States New York 3875 TRUE TRUE NA NA
2490832 Pine Island city US United States New York 3875 TRUE TRUE NA NA
2490932 Port Leyden city US United States New York 3875 TRUE TRUE NA NA
2490657 Oyster Bay Cove city US United States New York 3875 TRUE TRUE NA NA
2487681 Cherry Grove subcity US United States New York 3875 TRUE TRUE SUBCITY CITY
2489563 Lake Erie Beach subcity US United States New York 3875 TRUE TRUE SUBCITY CITY
2489626 Lawrence, Nassau County city US United States New York 3875 TRUE TRUE NA NA
2488607 Fort Johnson city US United States New York 3875 TRUE TRUE NA NA
2488015 Davis Park subcity US United States New York 3875 TRUE TRUE SUBCITY CITY
2490938 Port Washington North city US United States New York 3875 TRUE TRUE NA NA
2487792 Cold Brook city US United States New York 3875 TRUE TRUE NA NA
2490889 Point Lookout city US United States New York 3875 TRUE TRUE NA NA
2488280 East Norwich city US United States New York 3875 TRUE TRUE NA NA
2488417 Elmira Heights city US United States New York 3875 TRUE TRUE NA NA
2489965 McGraw city US United States New York 3875 TRUE TRUE NA NA
2490449 North Patchogue city US United States New York 3875 TRUE TRUE NA NA
2489313 Indian Lake city US United States New York 3875 TRUE TRUE NA NA
2488247 East Hills city US United States New York 3875 TRUE TRUE NA NA
2491746 St. Bonaventure city US United States New York 3875 TRUE TRUE NA NA
2487626 Center Moriches city US United States New York 3875 TRUE TRUE NA NA
2489051 Harris city US United States New York 3875 TRUE TRUE NA NA
2490103 Mohegan Lake city US United States New York 3875 TRUE TRUE NA NA
2487962 Crown Heights city US United States New York 3875 TRUE TRUE NA NA
2491526 Smallwood city US United States New York 3875 TRUE TRUE NA NA
2489263 Hudson Falls city US United States New York 3875 TRUE TRUE NA NA
2492535 Williston Park city US United States New York 3875 TRUE TRUE NA NA
2488878 Great River city US United States New York 3875 TRUE TRUE NA NA
2488302 East Rockaway city US United States New York 3875 TRUE TRUE NA NA
2489764 Long Lake city US United States New York 3875 TRUE TRUE NA NA
2491613 South Farmingdale city US United States New York 3875 TRUE TRUE NA NA
2491110 Richfield Springs city US United States New York 3875 TRUE TRUE NA NA
2492235 Water Mill city US United States New York 3875 TRUE TRUE NA NA
2492034 Tupper Lake city US United States New York 3875 TRUE TRUE NA NA
2491887 Sylvan Beach city US United States New York 3875 TRUE TRUE NA NA
2489557 Lake Carmel city US United States New York 3875 TRUE TRUE NA NA
2492423 West Sayville city US United States New York 3875 TRUE TRUE NA NA
2487285 Blue Point city US United States New York 3875 TRUE TRUE NA NA
2487142 Bedford Hills city US United States New York 3875 TRUE TRUE NA NA
2490389 North Creek city US United States New York 3875 TRUE TRUE NA NA
2489228 Hopewell Junction city US United States New York 3875 TRUE TRUE NA NA
2492479 Wheatley Heights city US United States New York 3875 TRUE TRUE NA NA
2490542 Ocean Beach city US United States New York 3875 TRUE TRUE NA NA
2489578 Lake Pleasant city US United States New York 3875 TRUE TRUE NA NA
2489214 Honeoye Falls city US United States New York 3875 TRUE TRUE NA NA
2487956 Cross River city US United States New York 3875 TRUE TRUE NA NA
2487793 Cold Spring city US United States New York 3875 TRUE TRUE NA NA
2488385 Elizaville city US United States New York 3875 TRUE TRUE NA NA
2490059 Miller Place city US United States New York 3875 TRUE TRUE NA NA
2488445 Erin city US United States New York 3875 TRUE TRUE NA NA
2490186 Mount Sinai city US United States New York 3875 TRUE TRUE NA NA
2491182 Rocky Point city US United States New York 3875 TRUE TRUE NA NA
2490441 North Massapequa city US United States New York 3875 TRUE TRUE NA NA
2488787 Glen Head city US United States New York 3875 TRUE TRUE NA NA
2491118 Richville city US United States New York 3875 TRUE TRUE NA NA
2491353 Schodack Landing city US United States New York 3875 TRUE TRUE NA NA
2489676 Lido Beach city US United States New York 3875 TRUE TRUE NA NA
2490031 Middle Island city US United States New York 3875 TRUE TRUE NA NA
2487169 Bellerose Terrace city US United States New York 3875 TRUE TRUE NA NA
2487690 Chestnut Ridge city US United States New York 3875 TRUE TRUE NA NA
2492652 Yorktown Heights city US United States New York 3875 TRUE TRUE NA NA
2488197 East Bloomfield city US United States New York 3875 TRUE TRUE NA NA
2490175 Mount Hope city US United States New York 3875 TRUE TRUE NA NA
2489943 Mastic Beach city US United States New York 3875 TRUE TRUE NA NA
2492187 Wading River city US United States New York 3875 TRUE TRUE NA NA
2489384 Jefferson Valley city US United States New York 3875 TRUE TRUE NA NA
2488916 Greenwood Lake city US United States New York 3875 TRUE TRUE NA NA
2491427 Sharon Springs city US United States New York 3875 TRUE TRUE NA NA
2492457 Westhampton Beach city US United States New York 3875 TRUE TRUE NA NA
2491220 Roslyn Heights city US United States New York 3875 TRUE TRUE NA NA
2490348 North Amityville city US United States New York 3875 TRUE TRUE NA NA
2491645 South Lockport city US United States New York 3875 TRUE TRUE NA NA
2488727 Garrison city US United States New York 3875 TRUE TRUE NA NA
2490379 North Chili city US United States New York 3875 TRUE TRUE NA NA
2492078 University Gardens city US United States New York 3875 TRUE TRUE NA NA
2489893 Maple View subcity US United States New York 3875 TRUE TRUE SUBCITY CITY
2488656 Freetown subcity US United States New York 3875 TRUE TRUE SUBCITY CITY
2489407 Johnsonville city US United States New York 3875 TRUE TRUE NA NA
2492375 West Hurley city US United States New York 3875 TRUE TRUE NA NA
2489224 Hoosick Falls city US United States New York 3875 TRUE TRUE NA NA
2490125 Montour Falls city US United States New York 3875 TRUE TRUE NA NA
2487963 Crown Point city US United States New York 3875 TRUE TRUE NA NA
2492514 Whitney Point city US United States New York 3875 TRUE TRUE NA NA
2491359 Schroon Lake city US United States New York 3875 TRUE TRUE NA NA
2488612 Fort Plain city US United States New York 3875 TRUE TRUE NA NA
2488296 East Quogue city US United States New York 3875 TRUE TRUE NA NA
2488599 Fort Edward city US United States New York 3875 TRUE TRUE NA NA
2492095 Upton city US United States New York 3875 TRUE TRUE NA NA
2488464 Fair Haven city US United States New York 3875 TRUE TRUE NA NA
2487519 Campbell Hall city US United States New York 3875 TRUE TRUE NA NA
2492184 Waccabuc city US United States New York 3875 TRUE TRUE NA NA
2490999 Putnam Lake city US United States New York 3875 TRUE TRUE NA NA
2487278 Bloomingdale city US United States New York 3875 TRUE TRUE NA NA
2492039 Tuscarora subcity US United States New York 3875 TRUE TRUE SUBCITY CITY
2491566 Sound Beach city US United States New York 3875 TRUE TRUE NA NA
2489572 Lake Luzerne city US United States New York 3875 TRUE TRUE NA NA
2490729 Pattersonville city US United States New York 3875 TRUE TRUE NA NA
2487975 Cuddebackville city US United States New York 3875 TRUE TRUE NA NA
2487049 Baldwin Harbor city US United States New York 3875 TRUE TRUE NA NA
2489153 High Falls city US United States New York 3875 TRUE TRUE NA NA
2492396 West Monroe city US United States New York 3875 TRUE TRUE NA NA
2489376 Java Center city US United States New York 3875 TRUE TRUE NA NA
2488283 East Otto city US United States New York 3875 TRUE TRUE NA NA
2489513 Knapp Creek city US United States New York 3875 TRUE TRUE NA NA
2491312 Sands Point city US United States New York 3875 TRUE TRUE NA NA
2487047 Baldwin, Nassau County city US United States New York 3875 TRUE TRUE NA NA
2491164 Rock Hill city US United States New York 3875 TRUE TRUE NA NA
2488661 French Creek subcity US United States New York 3875 TRUE TRUE SUBCITY CITY
2490875 Pleasant Valley city US United States New York 3875 TRUE TRUE NA NA
2487012 Averill Park city US United States New York 3875 TRUE TRUE NA NA
2487036 Baiting Hollow city US United States New York 3875 TRUE TRUE NA NA
2488614 Fort Salonga city US United States New York 3875 TRUE TRUE NA NA
2491185 Rodman city US United States New York 3875 TRUE TRUE NA NA
2490755 Pelham Manor city US United States New York 3875 TRUE TRUE NA NA
2491360 Schuyler Falls city US United States New York 3875 TRUE TRUE NA NA
2489820 Lyons Falls city US United States New York 3875 TRUE TRUE NA NA
2491263 Sackets Harbor city US United States New York 3875 TRUE TRUE NA NA
2489569 Lake Katrine city US United States New York 3875 TRUE TRUE NA NA
2489343 Irving city US United States New York 3875 TRUE TRUE NA NA
2487295 Bolton Landing city US United States New York 3875 TRUE TRUE NA NA
2487098 Batavia, Genesee County city US United States New York 3875 TRUE TRUE NA NA
2491108 Richburg city US United States New York 3875 TRUE TRUE NA NA
2491816 Stone Ridge city US United States New York 3875 TRUE TRUE NA NA
2487026 Bagdad subcity US United States New York 3875 TRUE TRUE SUBCITY CITY
2488820 Goldens Bridge city US United States New York 3875 TRUE TRUE NA NA
2490442 North Merrick city US United States New York 3875 TRUE TRUE NA NA
2489440 Keene Valley city US United States New York 3875 TRUE TRUE NA NA
2488697 Gainesville city US United States New York 3875 TRUE TRUE NA NA
2488217 East Durham city US United States New York 3875 TRUE TRUE NA NA
2489463 Kent city US United States New York 3875 TRUE TRUE NA NA
2490671 Painted Post city US United States New York 3875 TRUE TRUE NA NA
2488841 Grahamsville city US United States New York 3875 TRUE TRUE NA NA
2491926 Texas subcity US United States New York 3875 TRUE TRUE SUBCITY CITY
2487722 Clarence Center city US United States New York 3875 TRUE TRUE NA NA
2489351 Islip Terrace city US United States New York 3875 TRUE TRUE NA NA
2488812 Glenwood Landing city US United States New York 3875 TRUE TRUE NA NA
2489728 Livingston Manor city US United States New York 3875 TRUE TRUE NA NA
2488886 Green Island city US United States New York 3875 TRUE TRUE NA NA
2492510 Whitesville city US United States New York 3875 TRUE TRUE NA NA
2487206 Berlin city US United States New York 3875 TRUE TRUE NA NA
2489050 Harriman city US United States New York 3875 TRUE TRUE NA NA
2703980 Manhattan subcity US United States New York 3875 TRUE TRUE SUBCITY BOROUGH
2491561 Somers city US United States New York 3875 TRUE TRUE NA NA
2487052 Baldwinsville city US United States New York 3875 TRUE TRUE NA NA
2490247 Nesconset city US United States New York 3875 TRUE TRUE NA NA
2487886 Corning city US United States New York 3875 TRUE TRUE NA NA
2487787 Cohoes city US United States New York 3875 TRUE TRUE NA NA
2487369 Bridgehampton city US United States New York 3875 TRUE TRUE NA NA
2489232 Hornell city US United States New York 3875 TRUE TRUE NA NA
2488485 Farmingdale city US United States New York 3875 TRUE TRUE NA NA
2487492 Byron city US United States New York 3875 TRUE TRUE NA NA
2491341 Sayville city US United States New York 3875 TRUE TRUE NA NA
2489209 Holtsville city US United States New York 3875 TRUE TRUE NA NA
2487876 Copiague city US United States New York 3875 TRUE TRUE NA NA
2487117 Bayport city US United States New York 3875 TRUE TRUE NA NA
2487363 Brewster city US United States New York 3875 TRUE TRUE NA NA
2489078 Hastings city US United States New York 3875 TRUE TRUE NA NA
2488742 Geneseo city US United States New York 3875 TRUE TRUE NA NA
2487313 Boston city US United States New York 3875 TRUE TRUE NA NA
2487506 Calverton city US United States New York 3875 TRUE TRUE NA NA
2489506 Kirkwood city US United States New York 3875 TRUE TRUE NA NA
2486966 Armonk city US United States New York 3875 TRUE TRUE NA NA
2492495 White Plains city US United States New York 3875 TRUE TRUE NA NA
2488469 Fairport city US United States New York 3875 TRUE TRUE NA NA
2488007 Darien city US United States New York 3875 TRUE TRUE NA NA
2490728 Patterson city US United States New York 3875 TRUE TRUE NA NA
2492250 Watervliet city US United States New York 3875 TRUE TRUE NA NA
2491966 Ticonderoga city US United States New York 3875 TRUE TRUE NA NA
2491174 Rockland city US United States New York 3875 TRUE TRUE NA NA
2489855 Malta city US United States New York 3875 TRUE TRUE NA NA
2492630 Wyandanch city US United States New York 3875 TRUE TRUE NA NA
2491112 Richland city US United States New York 3875 TRUE TRUE NA NA
2488997 Hamilton city US United States New York 3875 TRUE TRUE NA NA
2491217 Roslyn city US United States New York 3875 TRUE TRUE NA NA
2489992 Medford city US United States New York 3875 TRUE TRUE NA NA
2490114 Montauk city US United States New York 3875 TRUE TRUE NA NA
2487717 Cincinnatus city US United States New York 3875 TRUE TRUE NA NA
2489389 Jericho city US United States New York 3875 TRUE TRUE NA NA
2490577 Oneida city US United States New York 3875 TRUE TRUE NA NA
2492446 Westbury city US United States New York 3875 TRUE TRUE NA NA
2489543 Lackawanna city US United States New York 3875 TRUE TRUE NA NA
2488815 Gloversville city US United States New York 3875 TRUE TRUE NA NA
2486914 Amherst city US United States New York 3875 TRUE TRUE NA NA
2491398 Selden city US United States New York 3875 TRUE TRUE NA NA
2487877 Coram city US United States New York 3875 TRUE TRUE NA NA
2490320 Niagara Falls city US United States New York 3875 TRUE TRUE NA NA
2487705 Chittenango city US United States New York 3875 TRUE TRUE NA NA
2487390 Brockport city US United States New York 3875 TRUE TRUE NA NA
2488808 Glenville city US United States New York 3875 TRUE TRUE NA NA
2487432 Buchanan city US United States New York 3875 TRUE TRUE NA NA
2492533 Williamsville city US United States New York 3875 TRUE TRUE NA NA
2488143 Dunkirk city US United States New York 3875 TRUE TRUE NA NA
2490617 Orwell city US United States New York 3875 TRUE TRUE NA NA
2492228 Warwick city US United States New York 3875 TRUE TRUE NA NA
2489196 Holbrook city US United States New York 3875 TRUE TRUE NA NA
2488534 Fishkill city US United States New York 3875 TRUE TRUE NA NA
2487819 Colonie city US United States New York 3875 TRUE TRUE NA NA
2488711 Garden City city US United States New York 3875 TRUE TRUE NA NA
2490273 New Haven city US United States New York 3875 TRUE TRUE NA NA
2487613 Cedarhurst city US United States New York 3875 TRUE TRUE NA NA
2487674 Chemung city US United States New York 3875 TRUE TRUE NA NA
2488437 Endicott city US United States New York 3875 TRUE TRUE NA NA
2487403 Brookhaven city US United States New York 3875 TRUE TRUE NA NA
2490003 Menands city US United States New York 3875 TRUE TRUE NA NA
2488418 Elmont city US United States New York 3875 TRUE TRUE NA NA
2489993 Medina city US United States New York 3875 TRUE TRUE NA NA
2490123 Monticello city US United States New York 3875 TRUE TRUE NA NA
2490004 Mendon city US United States New York 3875 TRUE TRUE NA NA
2488419 Elmsford city US United States New York 3875 TRUE TRUE NA NA
2488438 Endwell city US United States New York 3875 TRUE TRUE NA NA
2492552 Wilmington city US United States New York 3875 TRUE TRUE NA NA
2491099 Rhinebeck city US United States New York 3875 TRUE TRUE NA NA
2489905 Marcy city US United States New York 3875 TRUE TRUE NA NA
2489882 Manorville city US United States New York 3875 TRUE TRUE NA NA
2489845 Maine city US United States New York 3875 TRUE TRUE NA NA
2491560 Solvay city US United States New York 3875 TRUE TRUE NA NA
2489919 Marlboro city US United States New York 3875 TRUE TRUE NA NA
2489988 Mechanicville city US United States New York 3875 TRUE TRUE NA NA
2491784 Sterling city US United States New York 3875 TRUE TRUE NA NA
2491455 Sherrill city US United States New York 3875 TRUE TRUE NA NA
2492592 Woodhull city US United States New York 3875 TRUE TRUE NA NA
2492108 Valhalla city US United States New York 3875 TRUE TRUE NA NA
2488448 Esopus city US United States New York 3875 TRUE TRUE NA NA
2490225 Napoli city US United States New York 3875 TRUE TRUE NA NA
2491691 Southold city US United States New York 3875 TRUE TRUE NA NA
2487783 Coeymans city US United States New York 3875 TRUE TRUE NA NA
2489499 Kingsbury city US United States New York 3875 TRUE TRUE NA NA
2490760 Pendleton city US United States New York 3875 TRUE TRUE NA NA
2491738 Springville city US United States New York 3875 TRUE TRUE NA NA
2490851 Pittsford city US United States New York 3875 TRUE TRUE NA NA
2487650 Chappaqua city US United States New York 3875 TRUE TRUE NA NA
2491373 Scotia city US United States New York 3875 TRUE TRUE NA NA
2490307 Newcomb city US United States New York 3875 TRUE TRUE NA NA
2490984 Pulaski city US United States New York 3875 TRUE TRUE NA NA
2488408 Elma city US United States New York 3875 TRUE TRUE NA NA
2490550 Ohio city US United States New York 3875 TRUE TRUE NA NA
2490495 Northport city US United States New York 3875 TRUE TRUE NA NA
2490276 New Hyde Park city US United States New York 3875 TRUE TRUE NA NA
2488486 Farmington city US United States New York 3875 TRUE TRUE NA NA
2487874 Copenhagen city US United States New York 3875 TRUE TRUE NA NA
2489348 Islandia city US United States New York 3875 TRUE TRUE NA NA
2488074 Depew city US United States New York 3875 TRUE TRUE NA NA
2490878 Pleasantville city US United States New York 3875 TRUE TRUE NA NA
2491306 Sanborn city US United States New York 3875 TRUE TRUE NA NA
2489370 Jamesville city US United States New York 3875 TRUE TRUE NA NA
2487689 Chestertown city US United States New York 3875 TRUE TRUE NA NA
2488745 Georgetown city US United States New York 3875 TRUE TRUE NA NA
2488648 Fredonia city US United States New York 3875 TRUE TRUE NA NA
2488429 Elwood city US United States New York 3875 TRUE TRUE NA NA
2492644 Yaphank city US United States New York 3875 TRUE TRUE NA NA
2487630 Centereach city US United States New York 3875 TRUE TRUE NA NA
2487426 Brunswick city US United States New York 3875 TRUE TRUE NA NA
2488744 Genoa city US United States New York 3875 TRUE TRUE NA NA
2490144 Moriah city US United States New York 3875 TRUE TRUE NA NA
2489304 Ilion city US United States New York 3875 TRUE TRUE NA NA
2491423 Shandaken city US United States New York 3875 TRUE TRUE NA NA
2489726 Liverpool city US United States New York 3875 TRUE TRUE NA NA
2490118 Montebello city US United States New York 3875 TRUE TRUE NA NA
2491236 Roxbury city US United States New York 3875 TRUE TRUE NA NA
2489613 Larchmont city US United States New York 3875 TRUE TRUE NA NA
2486855 Akron city US United States New York 3875 TRUE TRUE NA NA
2489327 Inwood city US United States New York 3875 TRUE TRUE NA NA
2489636 Ledyard city US United States New York 3875 TRUE TRUE NA NA
2487095 Barton city US United States New York 3875 TRUE TRUE NA NA
2491388 Searingtown city US United States New York 3875 TRUE TRUE NA NA
2488982 Halfmoon city US United States New York 3875 TRUE TRUE NA NA
2492557 Wilton city US United States New York 3875 TRUE TRUE NA NA
2489667 Lewiston city US United States New York 3875 TRUE TRUE NA NA
2490868 Plattsburgh city US United States New York 3875 TRUE TRUE NA NA
2490955 Poughkeepsie city US United States New York 3875 TRUE TRUE NA NA
2492611 Woodstock city US United States New York 3875 TRUE TRUE NA NA
2488416 Elmira city US United States New York 3875 TRUE TRUE NA NA
2491538 Smithtown city US United States New York 3875 TRUE TRUE NA NA
2489122 Henrietta city US United States New York 3875 TRUE TRUE NA NA
2487004 Auburn city US United States New York 3875 TRUE TRUE NA NA
2491343 Scarsdale city US United States New York 3875 TRUE TRUE NA NA
2489117 Hempstead city US United States New York 3875 TRUE TRUE NA NA
2490625 Oswego city US United States New York 3875 TRUE TRUE NA NA
2490000 Melville city US United States New York 3875 TRUE TRUE NA NA
2673555 Staten Island subcity US United States New York 3875 TRUE TRUE SUBCITY BOROUGH
2491889 Syosset city US United States New York 3875 TRUE TRUE NA NA
2489083 Hauppauge city US United States New York 3875 TRUE TRUE NA NA
2490252 New Baltimore city US United States New York 3875 TRUE TRUE NA NA
2790125 Westchester County medium_geo_area US United States New York 3875 TRUE TRUE MEDIUM_GEO_AREA COUNTY
2488349 Eaton city US United States New York 3875 TRUE TRUE NA NA
2492075 Uniondale city US United States New York 3875 TRUE TRUE NA NA
2492219 Wantagh city US United States New York 3875 TRUE TRUE NA NA
2488654 Freeport city US United States New York 3875 TRUE TRUE NA NA
2487715 Cicero city US United States New York 3875 TRUE TRUE NA NA
2492246 Watertown city US United States New York 3875 TRUE TRUE NA NA
2790627 Erie County medium_geo_area US United States New York 3875 TRUE TRUE MEDIUM_GEO_AREA COUNTY
2790617 Rockland County medium_geo_area US United States New York 3875 TRUE TRUE MEDIUM_GEO_AREA COUNTY
2490084 Mineola city US United States New York 3875 TRUE TRUE NA NA
2487672 Cheektowaga city US United States New York 3875 TRUE TRUE NA NA
2489811 Lynbrook city US United States New York 3875 TRUE TRUE NA NA
2491991 Tonawanda city US United States New York 3875 TRUE TRUE NA NA
2489281 Huntington city US United States New York 3875 TRUE TRUE NA NA
2489369 Jamestown city US United States New York 3875 TRUE TRUE NA NA
2487556 Carmel city US United States New York 3875 TRUE TRUE NA NA
2492019 Troy city US United States New York 3875 TRUE TRUE NA NA
2490260 New City city US United States New York 3875 TRUE TRUE NA NA
2492649 York city US United States New York 3875 TRUE TRUE NA NA
2487404 Brooklyn subcity US United States New York 3875 TRUE TRUE SUBCITY BOROUGH
2491013 Queens subcity US United States New York 3875 TRUE TRUE SUBCITY BOROUGH
2491158 Rochester city US United States New York 3875 TRUE TRUE NA NA
2487444 Buffalo city US United States New York 3875 TRUE TRUE NA NA
2490287 New Rochelle city US United States New York 3875 TRUE TRUE NA NA
2491890 Syracuse city US United States New York 3875 TRUE TRUE NA NA
2733673 East New York neighborhood US United States New York 3875 TRUE TRUE NEIGHBORHOOD NEIGHBORHOOD
2490286 New Paltz city US United States New York 3875 TRUE TRUE NA NA
2486858 Albany city US United States New York 3875 TRUE TRUE NA NA
2490300 New York Mills city US United States New York 3875 TRUE TRUE NA NA
2492648 Yonkers city US United States New York 3875 TRUE TRUE NA NA
2489355 Ithaca city US United States New York 3875 TRUE TRUE NA NA
2490279 New Lebanon city US United States New York 3875 TRUE TRUE NA NA
2489632 Lebanon subcity US United States New York 3875 TRUE TRUE SUBCITY CITY
2492099 Utica city US United States New York 3875 TRUE TRUE NA NA
2489056 Harrison city US United States New York 3875 TRUE TRUE NA NA
2487241 Binghamton city US United States New York 3875 TRUE TRUE NA NA
2489500 Kingston city US United States New York 3875 TRUE TRUE NA NA
2790622 Kings County medium_geo_area US United States New York 3875 TRUE TRUE MEDIUM_GEO_AREA COUNTY
2490259 New Cassel city US United States New York 3875 TRUE TRUE NA NA
2491024 Ramapo city US United States New York 3875 TRUE TRUE NA NA
2491192 Rome city US United States New York 3875 TRUE TRUE NA NA
2490305 Newburgh city US United States New York 3875 TRUE TRUE NA NA
2490297 New Windsor city US United States New York 3875 TRUE TRUE NA NA
2491348 Schenectady city US United States New York 3875 TRUE TRUE NA NA
2486917 Amityville city US United States New York 3875 TRUE TRUE NA NA
2492232 Washingtonville city US United States New York 3875 TRUE TRUE NA NA
2488831 Goshen city US United States New York 3875 TRUE TRUE NA NA
2491229 Rotterdam city US United States New York 3875 TRUE TRUE NA NA
2491904 Tarrytown city US United States New York 3875 TRUE TRUE NA NA
2490221 Nanuet city US United States New York 3875 TRUE TRUE NA NA
2491195 Ronkonkoma city US United States New York 3875 TRUE TRUE NA NA
2488995 Hamburg city US United States New York 3875 TRUE TRUE NA NA
2490301 Newark city US United States New York 3875 TRUE TRUE NA NA
2492651 Yorktown city US United States New York 3875 TRUE TRUE NA NA
2489933 Maryland city US United States New York 3875 TRUE TRUE NA NA
2490271 New Hampton city US United States New York 3875 TRUE TRUE NA NA
2490993 Purchase city US United States New York 3875 TRUE TRUE NA NA
2490752 Peekskill city US United States New York 3875 TRUE TRUE NA NA
2488743 Geneva city US United States New York 3875 TRUE TRUE NA NA
2490544 Oceanside city US United States New York 3875 TRUE TRUE NA NA
2488341 Eastchester city US United States New York 3875 TRUE TRUE NA NA
2489662 Levittown city US United States New York 3875 TRUE TRUE NA NA
2490156 Morrisville city US United States New York 3875 TRUE TRUE NA NA
2491385 Seaford city US United States New York 3875 TRUE TRUE NA NA
2487214 Bethel city US United States New York 3875 TRUE TRUE NA NA
2489615 Latham city US United States New York 3875 TRUE TRUE NA NA
2491080 Rensselaer city US United States New York 3875 TRUE TRUE NA NA
2790113 Onondaga County medium_geo_area US United States New York 3875 TRUE TRUE MEDIUM_GEO_AREA COUNTY
2487868 Cooperstown city US United States New York 3875 TRUE TRUE NA NA
2491141 Riverhead city US United States New York 3875 TRUE TRUE NA NA
2487402 Brookfield city US United States New York 3875 TRUE TRUE NA NA
2491256 Rye city US United States New York 3875 TRUE TRUE NA NA
2490516 Nyack city US United States New York 3875 TRUE TRUE NA NA
2673772 Cornwall city US United States New York 3875 TRUE TRUE NA NA
2490011 Merrick city US United States New York 3875 TRUE TRUE NA NA
2790628 Ulster County medium_geo_area US United States New York 3875 TRUE TRUE MEDIUM_GEO_AREA COUNTY
2490549 Ogdensburg city US United States New York 3875 TRUE TRUE NA NA
2490763 Penfield city US United States New York 3875 TRUE TRUE NA NA
2492155 Vestal city US United States New York 3875 TRUE TRUE NA NA
2489147 Hicksville city US United States New York 3875 TRUE TRUE NA NA
2490856 Plainview city US United States New York 3875 TRUE TRUE NA NA
2491840 Suffern city US United States New York 3875 TRUE TRUE NA NA
2487124 Beacon city US United States New York 3875 TRUE TRUE NA NA
2487360 Brentwood city US United States New York 3875 TRUE TRUE NA NA
2490568 Olean city US United States New York 3875 TRUE TRUE NA NA
2488949 Guilderland city US United States New York 3875 TRUE TRUE NA NA
2489740 Lockport city US United States New York 3875 TRUE TRUE NA NA
2487399 Bronxville city US United States New York 3875 TRUE TRUE NA NA
2486918 Amsterdam city US United States New York 3875 TRUE TRUE NA NA
2489344 Irvington city US United States New York 3875 TRUE TRUE NA NA
2490691 Paris city US United States New York 3875 TRUE TRUE NA NA
2489937 Massapequa city US United States New York 3875 TRUE TRUE NA NA
2487738 Clay city US United States New York 3875 TRUE TRUE NA NA
2487219 Bethpage city US United States New York 3875 TRUE TRUE NA NA
2487023 Babylon city US United States New York 3875 TRUE TRUE NA NA
2492598 Woodmere city US United States New York 3875 TRUE TRUE NA NA
2491014 Queensbury city US United States New York 3875 TRUE TRUE NA NA
2789899 Orange County medium_geo_area US United States New York 3875 TRUE TRUE MEDIUM_GEO_AREA COUNTY
2487893 Cortland city US United States New York 3875 TRUE TRUE NA NA
2491462 Shirley city US United States New York 3875 TRUE TRUE NA NA
2489698 Lindenhurst city US United States New York 3875 TRUE TRUE NA NA
2491701 Sparkill city US United States New York 3875 TRUE TRUE NA NA
2487826 Commack city US United States New York 3875 TRUE TRUE NA NA
2489337 Irondequoit city US United States New York 3875 TRUE TRUE NA NA
2488442 Ephratah city US United States New York 3875 TRUE TRUE NA NA
2490723 Patchogue city US United States New York 3875 TRUE TRUE NA NA
2489866 Manhasset city US United States New York 3875 TRUE TRUE NA NA
2487291 Bohemia city US United States New York 3875 TRUE TRUE NA NA
2490583 Oneonta city US United States New York 3875 TRUE TRUE NA NA
2488487 Farmingville city US United States New York 3875 TRUE TRUE NA NA
2489001 Hamlin city US United States New York 3875 TRUE TRUE NA NA
2487009 Austerlitz city US United States New York 3875 TRUE TRUE NA NA
2487786 Cohocton city US United States New York 3875 TRUE TRUE NA NA
2487737 Claverack city US United States New York 3875 TRUE TRUE NA NA
2486944 Aquebogue city US United States New York 3875 TRUE TRUE NA NA
2492104 Valatie city US United States New York 3875 TRUE TRUE NA NA
2491253 Russia city US United States New York 3875 TRUE TRUE NA NA
2489200 Holland city US United States New York 3875 TRUE TRUE NA NA
2488514 Fine city US United States New York 3875 TRUE TRUE NA NA
2488723 Garnerville city US United States New York 3875 TRUE TRUE NA NA
2491331 Sauquoit city US United States New York 3875 TRUE TRUE NA NA
2492531 Williamson city US United States New York 3875 TRUE TRUE NA NA
2491809 Stockton city US United States New York 3875 TRUE TRUE NA NA
2491976 Tivoli city US United States New York 3875 TRUE TRUE NA NA
2488590 Forestville city US United States New York 3875 TRUE TRUE NA NA
2491902 Tannersville city US United States New York 3875 TRUE TRUE NA NA
2490037 Middleport city US United States New York 3875 TRUE TRUE NA NA
2489908 Margaretville city US United States New York 3875 TRUE TRUE NA NA
2490309 Newfield city US United States New York 3875 TRUE TRUE NA NA
2490674 Palenville city US United States New York 3875 TRUE TRUE NA NA
2488345 Eastport city US United States New York 3875 TRUE TRUE NA NA
2492627 Wurtsboro city US United States New York 3875 TRUE TRUE NA NA
2490226 Narrowsburg city US United States New York 3875 TRUE TRUE NA NA
2487524 Canaan city US United States New York 3875 TRUE TRUE NA NA
2490945 Portland city US United States New York 3875 TRUE TRUE NA NA
2489096 Hawthorne city US United States New York 3875 TRUE TRUE NA NA
2491519 Slingerlands city US United States New York 3875 TRUE TRUE NA NA
2490153 Morrisonville city US United States New York 3875 TRUE TRUE NA NA
2489445 Keeseville city US United States New York 3875 TRUE TRUE NA NA
2491663 South Salem city US United States New York 3875 TRUE TRUE NA NA
2490655 Oxford city US United States New York 3875 TRUE TRUE NA NA
2486990 Athens city US United States New York 3875 TRUE TRUE NA NA
2490126 Montrose city US United States New York 3875 TRUE TRUE NA NA
2489006 Hammondsport city US United States New York 3875 TRUE TRUE NA NA
2491731 Springfield city US United States New York 3875 TRUE TRUE NA NA
2491039 Ravena city US United States New York 3875 TRUE TRUE NA NA
2490781 Peru city US United States New York 3875 TRUE TRUE NA NA
2492212 Walton city US United States New York 3875 TRUE TRUE NA NA
2490189 Mount Vernon city US United States New York 3875 TRUE TRUE NA NA
2488271 East Meadow city US United States New York 3875 TRUE TRUE NA NA
2492172 Virgil city US United States New York 3875 TRUE TRUE NA NA
2491056 Red Hook city US United States New York 3875 TRUE TRUE NA NA
2490937 Port Washington city US United States New York 3875 TRUE TRUE NA NA
2488589 Forestport city US United States New York 3875 TRUE TRUE NA NA
2488807 Glens Falls city US United States New York 3875 TRUE TRUE NA NA
2488803 Glenmont city US United States New York 3875 TRUE TRUE NA NA
2492239 Waterford city US United States New York 3875 TRUE TRUE NA NA
2487192 Bennington city US United States New York 3875 TRUE TRUE NA NA
2490778 Persia subcity US United States New York 3875 TRUE TRUE SUBCITY CITY
2488836 Gowanda city US United States New York 3875 TRUE TRUE NA NA
2489323 Inlet city US United States New York 3875 TRUE TRUE NA NA
2489704 Lisbon city US United States New York 3875 TRUE TRUE NA NA
2492194 Wainscott city US United States New York 3875 TRUE TRUE NA NA
2490249 Neversink city US United States New York 3875 TRUE TRUE NA NA
2487154 Beekmantown city US United States New York 3875 TRUE TRUE NA NA
2486927 Angola city US United States New York 3875 TRUE TRUE NA NA
2486911 Amenia city US United States New York 3875 TRUE TRUE NA NA
2488636 Frankfort city US United States New York 3875 TRUE TRUE NA NA
2492277 Weedsport city US United States New York 3875 TRUE TRUE NA NA
2491708 Speculator city US United States New York 3875 TRUE TRUE NA NA
2490676 Palisades city US United States New York 3875 TRUE TRUE NA NA
2487798 Colden city US United States New York 3875 TRUE TRUE NA NA
2491202 Roscoe city US United States New York 3875 TRUE TRUE NA NA
2492563 Windham city US United States New York 3875 TRUE TRUE NA NA
2488709 Gansevoort city US United States New York 3875 TRUE TRUE NA NA
2490928 Port Jefferson city US United States New York 3875 TRUE TRUE NA NA
2492249 Waterville city US United States New York 3875 TRUE TRUE NA NA
2490106 Moira city US United States New York 3875 TRUE TRUE NA NA
2490437 North Lindenhurst city US United States New York 3875 TRUE TRUE NA NA
2491088 Rexford city US United States New York 3875 TRUE TRUE NA NA
2492114 Valley Stream city US United States New York 3875 TRUE TRUE NA NA
2490803 Phoenicia city US United States New York 3875 TRUE TRUE NA NA
2490852 Pittstown city US United States New York 3875 TRUE TRUE NA NA
2492638 Wyoming city US United States New York 3875 TRUE TRUE NA NA
2487635 Central Islip city US United States New York 3875 TRUE TRUE NA NA
2488042 Deer Park city US United States New York 3875 TRUE TRUE NA NA
2492179 Voorheesville city US United States New York 3875 TRUE TRUE NA NA
2491470 Shoreham city US United States New York 3875 TRUE TRUE NA NA
2491269 Sagaponack city US United States New York 3875 TRUE TRUE NA NA
2487204 Berkshire city US United States New York 3875 TRUE TRUE NA NA
2492554 Wilson city US United States New York 3875 TRUE TRUE NA NA
2488180 Earlville city US United States New York 3875 TRUE TRUE NA NA
2487518 Campbell city US United States New York 3875 TRUE TRUE NA NA
2487666 Chaumont city US United States New York 3875 TRUE TRUE NA NA
2489587 Lakeland city US United States New York 3875 TRUE TRUE NA NA
2488649 Freedom city US United States New York 3875 TRUE TRUE NA NA
2492532 Williamstown city US United States New York 3875 TRUE TRUE NA NA
2490680 Panama city US United States New York 3875 TRUE TRUE NA NA
2491323 Saranac city US United States New York 3875 TRUE TRUE NA NA
2489454 Kendall city US United States New York 3875 TRUE TRUE NA NA
2488223 East Farmingdale city US United States New York 3875 TRUE TRUE NA NA
2488670 Frewsburg city US United States New York 3875 TRUE TRUE NA NA
2489284 Huntington Station city US United States New York 3875 TRUE TRUE NA NA
2491111 Richford city US United States New York 3875 TRUE TRUE NA NA
2491019 Quogue city US United States New York 3875 TRUE TRUE NA NA
2492636 Wynantskill city US United States New York 3875 TRUE TRUE NA NA
2488011 Davenport city US United States New York 3875 TRUE TRUE NA NA
2488546 Flanders city US United States New York 3875 TRUE TRUE NA NA
2488076 Derby city US United States New York 3875 TRUE TRUE NA NA
2487657 Charlton city US United States New York 3875 TRUE TRUE NA NA
2489008 Hampton city US United States New York 3875 TRUE TRUE NA NA
2491523 Sloatsburg city US United States New York 3875 TRUE TRUE NA NA
2490611 Oriskany city US United States New York 3875 TRUE TRUE NA NA
2487207 Berne city US United States New York 3875 TRUE TRUE NA NA
2487296 Bombay city US United States New York 3875 TRUE TRUE NA NA
2488782 Glen Cove city US United States New York 3875 TRUE TRUE NA NA
2489836 Madrid city US United States New York 3875 TRUE TRUE NA NA
2486937 Apalachin city US United States New York 3875 TRUE TRUE NA NA
2487182 Belmont city US United States New York 3875 TRUE TRUE NA NA
2491521 Sloan city US United States New York 3875 TRUE TRUE NA NA
2489061 Hartford city US United States New York 3875 TRUE TRUE NA NA
2490801 Philmont city US United States New York 3875 TRUE TRUE NA NA
2492452 Westerlo city US United States New York 3875 TRUE TRUE NA NA
2491782 Stephentown city US United States New York 3875 TRUE TRUE NA NA
2490476 North Tonawanda city US United States New York 3875 TRUE TRUE NA NA
2490067 Millerton city US United States New York 3875 TRUE TRUE NA NA
2492650 Yorkshire city US United States New York 3875 TRUE TRUE NA NA
2491033 Ransomville city US United States New York 3875 TRUE TRUE NA NA
2488133 Duanesburg city US United States New York 3875 TRUE TRUE NA NA
2489727 Livingston city US United States New York 3875 TRUE TRUE NA NA
2490953 Pottersville city US United States New York 3875 TRUE TRUE NA NA
2491178 Rockville Centre city US United States New York 3875 TRUE TRUE NA NA
2488107 Dolgeville city US United States New York 3875 TRUE TRUE NA NA
2488450 Essex city US United States New York 3875 TRUE TRUE NA NA
2489541 LaFayette city US United States New York 3875 TRUE TRUE NA NA
2490553 Olcott city US United States New York 3875 TRUE TRUE NA NA
2491354 Schoharie city US United States New York 3875 TRUE TRUE NA NA
2490902 Pompey city US United States New York 3875 TRUE TRUE NA NA
2489879 Manorhaven subcity US United States New York 3875 TRUE TRUE SUBCITY CITY
2487265 Blauvelt city US United States New York 3875 TRUE TRUE NA NA
2487668 Chautauqua city US United States New York 3875 TRUE TRUE NA NA
2489171 Hillsdale city US United States New York 3875 TRUE TRUE NA NA
2487501 Calcium city US United States New York 3875 TRUE TRUE NA NA
2491735 Springs city US United States New York 3875 TRUE TRUE NA NA
2488044 Deerfield city US United States New York 3875 TRUE TRUE NA NA
2490206 Munnsville city US United States New York 3875 TRUE TRUE NA NA
2487871 Copake city US United States New York 3875 TRUE TRUE NA NA
2491196 Roosevelt city US United States New York 3875 TRUE TRUE NA NA
2487362 Brewerton city US United States New York 3875 TRUE TRUE NA NA
2492507 Whitesboro city US United States New York 3875 TRUE TRUE NA NA
2487811 Collins city US United States New York 3875 TRUE TRUE NA NA
2488359 Eden city US United States New York 3875 TRUE TRUE NA NA
2488900 Greenlawn city US United States New York 3875 TRUE TRUE NA NA
2488050 Defreestville city US United States New York 3875 TRUE TRUE NA NA
2487664 Chatham city US United States New York 3875 TRUE TRUE NA NA
2489175 Hilton city US United States New York 3875 TRUE TRUE NA NA
2491372 Scotchtown city US United States New York 3875 TRUE TRUE NA NA
2490758 Pembroke city US United States New York 3875 TRUE TRUE NA NA
2490964 Prattsburgh city US United States New York 3875 TRUE TRUE NA NA
2491327 Saratoga Springs city US United States New York 3875 TRUE TRUE NA NA
2486857 Alabama city US United States New York 3875 TRUE TRUE NA NA
2489065 Hartsdale city US United States New York 3875 TRUE TRUE NA NA
2490215 Muttontown city US United States New York 3875 TRUE TRUE NA NA
2490333 Niskayuna city US United States New York 3875 TRUE TRUE NA NA
2488860 Granville city US United States New York 3875 TRUE TRUE NA NA
2491714 Spencerport city US United States New York 3875 TRUE TRUE NA NA
2490633 Otisville city US United States New York 3875 TRUE TRUE NA NA
2490900 Pomona city US United States New York 3875 TRUE TRUE NA NA
2490956 Poughquag city US United States New York 3875 TRUE TRUE NA NA
2492196 Walden city US United States New York 3875 TRUE TRUE NA NA
2490599 Orangeburg city US United States New York 3875 TRUE TRUE NA NA
2487838 Congers city US United States New York 3875 TRUE TRUE NA NA
2487721 Clarence city US United States New York 3875 TRUE TRUE NA NA
2492271 Webster city US United States New York 3875 TRUE TRUE NA NA
2491399 Selkirk city US United States New York 3875 TRUE TRUE NA NA
2490524 Oakdale city US United States New York 3875 TRUE TRUE NA NA
2492570 Wingdale city US United States New York 3875 TRUE TRUE NA NA
2489137 Hewlett city US United States New York 3875 TRUE TRUE NA NA
2487532 Canastota city US United States New York 3875 TRUE TRUE NA NA
2488996 Hamden city US United States New York 3875 TRUE TRUE NA NA
2488492 Fayetteville city US United States New York 3875 TRUE TRUE NA NA
2488057 Delmar city US United States New York 3875 TRUE TRUE NA NA
2489552 Lagrangeville city US United States New York 3875 TRUE TRUE NA NA
2489401 Johnsburg city US United States New York 3875 TRUE TRUE NA NA
2487176 Bellport city US United States New York 3875 TRUE TRUE NA NA
2486964 Arlington city US United States New York 3875 TRUE TRUE NA NA
2489942 Mastic city US United States New York 3875 TRUE TRUE NA NA
2489112 Hector city US United States New York 3875 TRUE TRUE NA NA
2489125 Herkimer city US United States New York 3875 TRUE TRUE NA NA
2491213 Rosendale city US United States New York 3875 TRUE TRUE NA NA
2486854 Airmont city US United States New York 3875 TRUE TRUE NA NA
2490809 Piermont city US United States New York 3875 TRUE TRUE NA NA
2487414 Brookville city US United States New York 3875 TRUE TRUE NA NA
2490054 Millbrook city US United States New York 3875 TRUE TRUE NA NA
2488475 Fallsburg city US United States New York 3875 TRUE TRUE NA NA
2489945 Mattituck city US United States New York 3875 TRUE TRUE NA NA
2489522 Knox city US United States New York 3875 TRUE TRUE NA NA
2489600 Lancaster city US United States New York 3875 TRUE TRUE NA NA
2488468 Fairmount city US United States New York 3875 TRUE TRUE NA NA
2490146 Moriches city US United States New York 3875 TRUE TRUE NA NA
2491246 Rush city US United States New York 3875 TRUE TRUE NA NA
2492021 Trumansburg city US United States New York 3875 TRUE TRUE NA NA
2488572 Fonda city US United States New York 3875 TRUE TRUE NA NA
2491362 Schuylerville city US United States New York 3875 TRUE TRUE NA NA
2492177 Volney city US United States New York 3875 TRUE TRUE NA NA
2492659 Youngstown city US United States New York 3875 TRUE TRUE NA NA
2487070 Bardonia city US United States New York 3875 TRUE TRUE NA NA
2492283 Wells city US United States New York 3875 TRUE TRUE NA NA
2492456 Westhampton city US United States New York 3875 TRUE TRUE NA NA
2490588 Ontario city US United States New York 3875 TRUE TRUE NA NA
2487068 Barcelona city US United States New York 3875 TRUE TRUE NA NA
2489194 Hogansburg city US United States New York 3875 TRUE TRUE NA NA
2492240 Waterloo city US United States New York 3875 TRUE TRUE NA NA
2486835 Accord city US United States New York 3875 TRUE TRUE NA NA
2491328 Sardinia city US United States New York 3875 TRUE TRUE NA NA
2492135 Varysburg city US United States New York 3875 TRUE TRUE NA NA
2490845 Piseco city US United States New York 3875 TRUE TRUE NA NA
2488370 Edinburg city US United States New York 3875 TRUE TRUE NA NA
2488838 Grafton city US United States New York 3875 TRUE TRUE NA NA
2489505 Kirkville city US United States New York 3875 TRUE TRUE NA NA
2489168 Hillburn city US United States New York 3875 TRUE TRUE NA NA
2487638 Central Valley city US United States New York 3875 TRUE TRUE NA NA
2492414 West Point city US United States New York 3875 TRUE TRUE NA NA
2487263 Blasdell city US United States New York 3875 TRUE TRUE NA NA
2487379 Brightwaters city US United States New York 3875 TRUE TRUE NA NA
2492214 Walworth city US United States New York 3875 TRUE TRUE NA NA
2491346 Schaghticoke city US United States New York 3875 TRUE TRUE NA NA
2489913 Marilla city US United States New York 3875 TRUE TRUE NA NA
2489368 Jamesport city US United States New York 3875 TRUE TRUE NA NA
2489244 Houghton city US United States New York 3875 TRUE TRUE NA NA
2491380 Scriba city US United States New York 3875 TRUE TRUE NA NA
2487840 Conklin city US United States New York 3875 TRUE TRUE NA NA
2489955 Mayville city US United States New York 3875 TRUE TRUE NA NA
2491955 Thornwood city US United States New York 3875 TRUE TRUE NA NA
2487120 Bayville city US United States New York 3875 TRUE TRUE NA NA
2490804 Phoenix city US United States New York 3875 TRUE TRUE NA NA
2486860 Albertson city US United States New York 3875 TRUE TRUE NA NA
2488393 Ellenville city US United States New York 3875 TRUE TRUE NA NA
2489946 Mattydale city US United States New York 3875 TRUE TRUE NA NA
2489324 Interlaken city US United States New York 3875 TRUE TRUE NA NA
2486904 Amagansett city US United States New York 3875 TRUE TRUE NA NA
2491121 Ridge city US United States New York 3875 TRUE TRUE NA NA
2490112 Monsey city US United States New York 3875 TRUE TRUE NA NA
2489433 Katonah city US United States New York 3875 TRUE TRUE NA NA
2487986 Cutchogue city US United States New York 3875 TRUE TRUE NA NA
2489378 Jay city US United States New York 3875 TRUE TRUE NA NA
2490854 Plainedge city US United States New York 3875 TRUE TRUE NA NA
2489858 Malverne city US United States New York 3875 TRUE TRUE NA NA
2790636 Lewis County medium_geo_area US United States New York 3875 TRUE TRUE MEDIUM_GEO_AREA COUNTY
2488907 Greenvale city US United States New York 3875 TRUE TRUE NA NA
2491692 Southport city US United States New York 3875 TRUE TRUE NA NA
2490780 Perth city US United States New York 3875 TRUE TRUE NA NA
2490675 Palermo city US United States New York 3875 TRUE TRUE NA NA

Location Key with Coordinates/Geometries

When querying locations using get_fb_parameter_ids, setting add_location_coords to TRUE adds coordinates and, when available, geometries.

ny_cities_coords_df <- get_fb_parameter_ids(type    = "city",
                                            version = VERSION, 
                                            token   = TOKEN,
                                            region_id = ny_key,
                                            q = "New York",
                                            add_location_coords = T)

leaflet() %>%
  addTiles() %>%
  addCircles(data = ny_cities_coords_df,
              popup = ~name)

Get coordinates/geometries for location keys

Above we show that, when using get_fb_parameter_ids, coordinates/geometries of locations can be added by setting add_location_coords to TRUE. However, coordinates/geometries can also be queried using location keys. Retrieving locations/coordinates for many locations can take a long time. Consequently, we may want to (1) use get_fb_parameter_ids to obtain location keys, (2) filter keys to relevant keys, then (3) query coordinates/geometries for relevant locations.

For valid location keys, the function will return coordinates (latitude and longitude). When available, the function will also return the geometry.

Below we show an example for obtaining geometries for Washington, DC zip codes

## All Washington, DC zip codes start with 20
zip_df <- get_fb_parameter_ids(type = "zip", 
                               q = "20", 
                               country_code = "US",
                               version = VERSION, 
                               token = TOKEN)

zip_dc_df <- zip_df %>%
  filter(region == "Washington, District of Columbia")

zip_dc_sf <- get_location_coords(location_unit_type = "zip",
                                 location_keys = zip_dc_df$key,
                                 version = VERSION,
                                 token = TOKEN)

leaflet() %>%
  addTiles() %>%
  addPolygons(data = zip_dc_sf,
              popup = ~name)

Querying Data

The query_fb_marketing_api function enables querying daily and monthly active users for specific locations and by specific types. Many parameters rely on IDs obtained from the get_fb_parameter_ids function. For example, get_fb_parameter_ids can be used to obtain the location key for New York City and the interest parameter ID for “Music (entertainment & media)”; these IDs can then be used in query_fb_marketing_api to obtain the number of Facebook users interested in music that live in New York City.

Different Location Types

The number of daily and monthly active Facebook users can be queried (1) around a specific point (setting the latitude and longitude and the radius around this point), and (2) for a specific geographic (e.g., country, region, city, neighborhood, etc.). For small geographies, such as neighborhoods, a radius can also be set.

Radius around lat/lon


## All Facebook Users by Radius (Near NYC)
query_fb_marketing_api(location_unit_type = "coordinates",
                                  lat_lon            = c(40.712, -74.006),
                                  radius             = 5,
                                  radius_unit        = "kilometer",
                                  version            = VERSION, 
                                  creation_act       = CREATION_ACT, 
                                  token              = TOKEN) %>%
  kable() %>% 
  kable_styling() %>%
  scroll_box(width = "100%")
estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound location_unit_type location_types radius radius_unit gender age_min age_max latitude longitude api_call_time_utc
1778265 2300000 2700000 coordinates home or recent 5 kilometer 1 or 2 18 65 40.712 -74.006 2024-05-06 17:01:19

Facebook enables querying a specific location to determine a suggested radius to reach enough people (see Facebook documentation here). We can use the get_fb_suggested_radius function to get the suggested radius. Below shows the querying the suggested radius for Paris, France and Paris, Kentucky.


# Paris, France
get_fb_suggested_radius(location = c(48.856667, 2.352222),
                        version = VERSION,
                        token = TOKEN) %>%
  kable() %>% 
  kable_styling() %>%
  scroll_box(width = "100%")
suggested_radius distance_unit
1 kilometer

# Paris, Kentucky
get_fb_suggested_radius(location = c(38.209682, -84.253915),
                        version = VERSION,
                        token = TOKEN) %>%
  kable() %>% 
  kable_styling() %>%
  scroll_box(width = "100%")
suggested_radius distance_unit
25 kilometer

Location IDs - Country, State, District, City, Neighborhood, etc.

We can also query using different location types, including countries, cities, etc. The get_fb_parameter_ids() function can be used to extract location keys for different location types; the location keys can then be used in the query_fb_marketing_api(). The below table indicates all the location types supported by the package.

  • Location Type: This is specified (1) in the type parameter in the get_fb_parameter_ids() function and in the location_unit_type parameter in the query_fb_marketing_api() function
  • Radius Can be Specified: For these location types, a radius can optionally be specified; for example, to specify a location and it’s surrounding area.
  • US Only: These location types can only be used for the US
Location Type Radius Can be Specified US Only Example
country_group No No World Wide
country No No United States
region No No New York
large_geo_area No No Akkar, Lebanon
medium_geo_area No No Henrico County, Virginia, USA
small_geo_area No No El Rosario, Spain
city Yes No New York City
subcity No No Manhattan
neighborhood No No East Village, Manhattan
zip No Yes 90210
geo_market No Yes New York
electoral_district No Yes New York’s 18th District, 2020 Census

Below shows examples for querying Facebook users for each type of location type. Note that when entering the type in get_fb_parameter_ids, the singular is used (e.g., "country"), while when entering the type in query_fb_marketing_api, the plural is used (e.g., "countries"). Using the singular type to obtain the IDs and the plural to query the number of Facebook users mimics how parameters are entered in the Facebook Marketing API.

Country Groups

#### Country Group: World Wide
loc_df <- get_fb_parameter_ids(type = "country_group", 
                               version = VERSION, token = TOKEN)

query_fb_marketing_api(
  location_unit_type = "country_groups",
  location_keys      = loc_df %>% 
    filter(name == "Worldwide") %>% 
    pull(key),
  version            = VERSION, 
  creation_act       = CREATION_ACT, 
  token              = TOKEN) %>%
  kable() %>% 
  kable_styling() %>%
  scroll_box(width = "100%")
estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound location_unit_type location_types location_keys gender age_min age_max api_call_time_utc
0 2740800000 3224400000 country_groups home or recent worldwide 1 or 2 18 65 2024-05-06 17:01:20
Country
#### Country: United States
loc_df <- get_fb_parameter_ids(type = "country", 
                               version = VERSION, token = TOKEN)

query_fb_marketing_api(
  location_unit_type = "countries",
  location_keys      = loc_df %>% 
    filter(name == "United States") %>% 
    pull(key),
  version            = VERSION, 
  creation_act       = CREATION_ACT, 
  token              = TOKEN) %>%
  kable() %>% 
  kable_styling() %>%
  scroll_box(width = "100%")
estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound location_unit_type location_types location_keys gender age_min age_max api_call_time_utc
219374690 234900000 276400000 countries home or recent US 1 or 2 18 65 2024-05-06 17:01:21
Region

#### Region: New York (state)
region_df <- get_fb_parameter_ids(type = "region", country_code = "US", 
                                  version = VERSION, token = TOKEN)

query_fb_marketing_api(
  location_unit_type = "regions",
  location_keys      = region_df %>% 
    filter(name == "New York") %>% 
    pull(key),
  version            = VERSION, 
  creation_act       = CREATION_ACT, 
  token              = TOKEN) %>%
  kable() %>% 
  kable_styling() %>%
  scroll_box(width = "100%")
estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound location_unit_type location_types location_keys gender age_min age_max api_call_time_utc
13758866 14700000 17300000 regions home or recent 3875 1 or 2 18 65 2024-05-06 17:01:22
Large Geographic Area

The Facebook Marketing Targeting Search provides the following description about large geographic areas: “Known commonly as a district or governate covering hundreds of square kilometers or more. Example: Akkar in Lebanon.”


#### Large Metro Area
loc_df <- get_fb_parameter_ids(type = "large_geo_area", 
                               country_code = "LB", 
                               q = "Akkar",
                               version = VERSION, token = TOKEN)

query_fb_marketing_api(
  location_unit_type = "large_geo_areas",
  location_keys      = loc_df %>% 
    filter(name == "Akkar") %>% 
    pull(key),
  version            = VERSION, 
  creation_act       = CREATION_ACT, 
  token              = TOKEN) %>%
  kable() %>% 
  kable_styling() %>%
  scroll_box(width = "100%")
estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound location_unit_type location_types location_keys gender age_min age_max api_call_time_utc
94014 130800 153800 large_geo_areas home or recent 1321105 1 or 2 18 65 2024-05-06 17:01:23
Medium Geographic Area

The Facebook Marketing Targeting Search provides the following description about medium geographic areas: “Known commonly as a county, covering more than one city. Example: Henrico county in the state of Virginia in United States.”


#### Large Metro Area
loc_df <- get_fb_parameter_ids(type = "medium_geo_area", 
                               country_code = "US", 
                               q = "Henrico",
                               version = VERSION, token = TOKEN)

query_fb_marketing_api(
  location_unit_type = "medium_geo_areas",
  location_keys      = loc_df %>% 
    filter(name == "Henrico") %>% 
    pull(key),
  version            = VERSION, 
  creation_act       = CREATION_ACT, 
  token              = TOKEN) %>%
  kable() %>% 
  kable_styling() %>%
  scroll_box(width = "100%")
estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound location_unit_type location_types location_keys gender age_min age_max api_call_time_utc
159379 197600 232500 medium_geo_areas home or recent 2701973 1 or 2 18 65 2024-05-06 17:01:24
Small Geographic Area

The Facebook Marketing Targeting Search provides the following description about small geographic areas: “Known commonly as a residential area near a city or town. Example: El Rosario near Marbella in Spain.”


#### Large Metro Area
loc_df <- get_fb_parameter_ids(type = "small_geo_area", 
                               country_code = "ES", 
                               q = "El",
                               version = VERSION, token = TOKEN)

query_fb_marketing_api(
  location_unit_type = "small_geo_areas",
  location_keys      = loc_df %>% 
    filter(name == "El Rosario") %>% 
    pull(key),
  version            = VERSION, 
  creation_act       = CREATION_ACT, 
  token              = TOKEN) %>%
  kable() %>% 
  kable_styling() %>%
  scroll_box(width = "100%")
estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound location_unit_type location_types location_keys gender age_min age_max api_call_time_utc
6884 7900 9300 small_geo_areas home or recent 2713574 1 or 2 18 65 2024-05-06 17:01:25
City
#### City: New York City
loc_df <- get_fb_parameter_ids(type = "city", 
                               region_id = region_df %>% 
                                 filter(name == "New York") %>% 
                                 pull(key),
                               q = "New York",
                               version = VERSION, token = TOKEN)

## Facebook users in NYC
query_fb_marketing_api(
  location_unit_type = "cities",
  location_keys      = loc_df %>% filter(name == "New York") %>% pull(key),
  version            = VERSION, 
  creation_act       = CREATION_ACT, 
  token              = TOKEN) %>%
  kable() %>% 
  kable_styling() %>%
  scroll_box(width = "100%")
estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound location_unit_type location_types location_keys gender age_min age_max api_call_time_utc
7057416 7900000 9300000 cities home or recent 2490299 1 or 2 18 65 2024-05-06 17:01:29

## Facebook users in and 10 miles around NYC
city_r_df <- query_fb_marketing_api(
  location_unit_type = "cities",
  location_keys      = loc_df %>% filter(name == "New York") %>% pull(key),
  radius             = 10,
  radius_unit        = "mile",
  version            = VERSION, 
  creation_act       = CREATION_ACT, 
  token              = TOKEN) %>%
  kable() %>% 
  kable_styling() %>%
  scroll_box(width = "100%")
Subcity
#### Subcity: Manhattan
loc_df <- get_fb_parameter_ids(type = "subcity", 
                               region_id = region_df %>% 
                                 filter(name == "New York") %>% 
                                 pull(key),
                               q = "Manhattan",
                               version = VERSION, token = TOKEN)

query_fb_marketing_api(
  location_unit_type = "subcities",
  location_keys      = loc_df %>% filter(name == "Manhattan") %>% pull(key),
  version            = VERSION, 
  creation_act       = CREATION_ACT, 
  token              = TOKEN) %>%
  kable() %>% 
  kable_styling() %>%
  scroll_box(width = "100%")
estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound location_unit_type location_types location_keys gender age_min age_max api_call_time_utc
2050996 2600000 3e+06 subcities home or recent 2703980 1 or 2 18 65 2024-05-06 17:01:31
Neighborhood
loc_df <- get_fb_parameter_ids(type = "neighborhood", 
                               region_id = region_df %>% 
                                 filter(name == "New York") %>% 
                                 pull(key),
                               q = "East Village",
                               version = VERSION, token = TOKEN)

query_fb_marketing_api(
  location_unit_type = "neighborhoods",
  location_keys      = loc_df %>% 
    filter(name == "East Village, Manhattan") %>% 
    pull(key),
  version            = VERSION, 
  creation_act       = CREATION_ACT, 
  token              = TOKEN) %>%
  kable() %>% 
  kable_styling() %>%
  scroll_box(width = "100%")
estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound location_unit_type location_types location_keys gender age_min age_max api_call_time_utc
48063 65800 77400 neighborhoods home or recent 2728364 1 or 2 18 65 2024-05-06 17:01:32
Zip Code
## Zip codes can be directly entered as "US:[Zip Code]"
query_fb_marketing_api(
  location_unit_type = "zips",
  location_keys      = "US:90210",
  version            = VERSION, 
  creation_act       = CREATION_ACT, 
  token              = TOKEN) %>%
  kable() %>% 
  kable_styling() %>%
  scroll_box(width = "100%")
estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound location_unit_type location_types location_keys gender age_min age_max api_call_time_utc
31834 39600 46600 zips home or recent US:90210 1 or 2 18 65 2024-05-06 17:01:32

## Zip codes can also be searched for using: "get_fb_parameter_ids"
loc_df <- get_fb_parameter_ids(type = "zip", 
                               q = "9", # Search using numbers
                               version = VERSION, token = TOKEN)

query_fb_marketing_api(
  location_unit_type = "zips",
  location_keys      = loc_df %>% filter(name == "90210") %>% pull(key),
  version            = VERSION, 
  creation_act       = CREATION_ACT, 
  token              = TOKEN) %>%
  kable() %>% 
  kable_styling() %>%
  scroll_box(width = "100%")
estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound location_unit_type location_types location_keys gender age_min age_max api_call_time_utc
31834 39600 46600 zips home or recent US:90210 1 or 2 18 65 2024-05-06 17:01:42
Geo Market (U.S. Designated Market Areas)
loc_df <- get_fb_parameter_ids(type = "geo_market", 
                               version = VERSION, token = TOKEN)

query_fb_marketing_api(
  location_unit_type = "geo_markets",
  location_keys      = loc_df %>% 
    filter(name == "New York") %>% 
    pull(key),
  version            = VERSION, 
  creation_act       = CREATION_ACT, 
  token              = TOKEN) %>%
  kable() %>% 
  kable_styling() %>%
  scroll_box(width = "100%")
estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound location_unit_type location_types location_keys gender age_min age_max api_call_time_utc
15658746 16800000 19800000 geo_markets home or recent DMA:501 1 or 2 18 65 2024-05-06 17:01:42
Electoral Districts
loc_df <- get_fb_parameter_ids(type = "electoral_district", 
                               q = "New York", 
                               version = VERSION, token = TOKEN)

query_fb_marketing_api(
  location_unit_type = "electoral_districts",
  location_keys      = loc_df %>% 
    filter(name == "New York's 18th District - 2020 Census") %>% 
    pull(key),
  version            = VERSION, 
  creation_act       = CREATION_ACT, 
  token              = TOKEN) %>%
  kable() %>% 
  kable_styling() %>%
  scroll_box(width = "100%")
estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound location_unit_type location_types location_keys gender age_min age_max api_call_time_utc
434981 528800 622100 electoral_districts home or recent US:NY18:2020 1 or 2 18 65 2024-05-06 17:01:44

Querying data using parameter IDs

Using one parameter ID per parameter type

We use parameter IDs to query the number of Facebook users by behaviors, interests, etc. Below we show examples querying data by behaviors and interests. An AND condition is used when parameters are entered for multiple parameter types. For example, the third example shows querying users by a behavior and an interest—setting a value in query_fb_marketing_api for the behaviors (commuters) and interests (music) parameters. In this case, the function determines the number of Facebook users that are commuters AND have an interest in music.


# Likely commute to work in US
beh_comm_id <- behaviors_df %>% filter(name == "Commuters") %>% pull(id)
query_fb_marketing_api(location_unit_type = "countries",
                       location_keys      = "US",
                       behaviors          = beh_comm_id,
                       version            = VERSION, 
                       creation_act       = CREATION_ACT, 
                       token              = TOKEN)
#>   estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound
#> 1     20968885                 22000000                 25900000
#>   location_unit_type location_types location_keys     behaviors gender age_min
#> 1          countries home or recent            US 6013516370183 1 or 2      18
#>   age_max   api_call_time_utc
#> 1      65 2024-05-06 17:01:45

# Interested in music in US
int_music_id <- interests_df %>% filter(name == "Music (entertainment & media)") %>% pull(id)
query_fb_marketing_api(location_unit_type = "countries",
                       location_keys      = "US",
                       interests          = int_music_id,
                       version            = VERSION, 
                       creation_act       = CREATION_ACT, 
                       token              = TOKEN)
#>   estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound
#> 1    187777990                178600000                210100000
#>   location_unit_type location_types location_keys     interests gender age_min
#> 1          countries home or recent            US 6003020834693 1 or 2      18
#>   age_max   api_call_time_utc
#> 1      65 2024-05-06 17:01:46

# Likely commute to work AND interested in music in US
query_fb_marketing_api(location_unit_type = "countries",
                       location_keys      = "US",
                       behaviors          = beh_comm_id,
                       interests          = int_music_id,
                       version            = VERSION, 
                       creation_act       = CREATION_ACT, 
                       token              = TOKEN)
#>   estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound
#> 1     18508523                 17400000                 20500000
#>   location_unit_type location_types location_keys     interests     behaviors
#> 1          countries home or recent            US 6003020834693 6013516370183
#>   gender age_min age_max   api_call_time_utc
#> 1 1 or 2      18      65 2024-05-06 17:01:47

And and OR Categories

The function allows for specifying and and or conditions; for example, identifying Facebook users that are commuters and/or are frequent travelers. Vectors and lists are used to distinguish between AND and OR conditions:

  • Vectors c() are used to specify OR conditions
  • Lists list() are used to specify AND conditions

However, the following parameters can only except one input (a list or vector is not allowed).

  • location_unit_type
  • radius
  • radius_unit
Within parameter types

To specify AND or OR conditions for the same parameter type:

  • Enter multiple parameter IDs within vectors c() to specify OR conditions
  • Enter multiple parameter IDs within lists list() to specify AND conditions

beh_freqtrvl_id  <- behaviors_df %>% filter(name == "Frequent travellers") %>% pull(id)
beh_comm_id      <- behaviors_df %>% filter(name == "Commuters") %>% pull(id)
beh_sb_id        <- behaviors_df %>% filter(name == "Small business owners") %>% pull(id)

# Users who are: Commuters or Travelers
query_fb_marketing_api(location_unit_type = "countries",
                      location_keys      = "US",
                      behaviors          = c(beh_comm_id, beh_freqtrvl_id),
                      version            = VERSION, 
                      creation_act       = CREATION_ACT, 
                      token              = TOKEN)
#>   estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound
#> 1    110796644                116200000                136700000
#>   location_unit_type location_types location_keys
#> 1          countries home or recent            US
#>                        behaviors gender age_min age_max   api_call_time_utc
#> 1 6013516370183 or 6002714895372 1 or 2      18      65 2024-05-06 17:01:48

# Users who are: Commuters and Travelers
query_fb_marketing_api(location_unit_type = "countries",
                      location_keys      = "US",
                      behaviors          = list(beh_comm_id, beh_freqtrvl_id),
                      version            = VERSION, 
                      creation_act       = CREATION_ACT, 
                      token              = TOKEN)
#>   estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound
#> 1     20053536                 20600000                 24200000
#>   location_unit_type location_types location_keys
#> 1          countries home or recent            US
#>                         behaviors gender age_min age_max   api_call_time_utc
#> 1 6013516370183 and 6002714895372 1 or 2      18      65 2024-05-06 17:01:48

# Users who are (Commuters or Small Business Owners) and Travelers
query_fb_marketing_api(location_unit_type = "countries",
                       location_keys      = "US",
                       behaviors          = list(c(beh_comm_id,
                                                   beh_sb_id), 
                                                 beh_freqtrvl_id),
                       version            = VERSION, 
                       creation_act       = CREATION_ACT, 
                       token              = TOKEN)
#>   estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound
#> 1     23764960                 24200000                 28500000
#>   location_unit_type location_types location_keys
#> 1          countries home or recent            US
#>                                            behaviors gender age_min age_max
#> 1 (6013516370183 or 6002714898572) and 6002714895372 1 or 2      18      65
#>     api_call_time_utc
#> 1 2024-05-06 17:01:49
Across parameter types: Flexible Targeting

Flexible tageting, using the flex_target parameter, allows for more complicated parameter specification—including AND conditions across parameter types (eg, behavior X AND interest Y). The input for flex_target follows the following logic:

  • flex_target uses named lists to specify the (1) parameter type and (2) parameter ID
  • All parameters within the same list index are grouped using an OR condition
  • All parameter separated across list indices are spearated by an AND condition

The below shows examples using dummy IDs

Example 1: OR Condition The below shows an example setting an OR condition for interest ID 2 and behavior ID 2. Both interest:1 and behavior:2 are in the same list index, so are grouped using an OR condition (interests:1 OR behavior 2)

flex_param <- list("interests" = 1, "behaviors" = 2)

Example 2: AND Condition The below shows an example setting an AND condition for interest ID 2 and behavior ID 2. interest:1 and behavior:2 are separated across list indices, so are separated by an AND condition (interests:1 AND behavior:2)

flex_param <- list(list("interests" = 1), list("behaviors" = 2))

Example 3: OR and AND Conditions The below shows a more complicated example, which grabs all users that meet (EITHER interests:1 or behaviors:3) AND (behaviors:2). Everything within flex_param[[1]] are grouped within OR conditions, but different indices (flex_param[[1]] and flex_param[[2]]) are separated by AND conditions.

flex_param <- list(list("interests" = 1, "behaviors" = 3), list("behaviors" = 2))

Example 4: OR and AND Conditions The below shows a more complicated example, which grabs all users that meet (EITHER interests:1 or behaviors:3) AND (EITHER behaviors:2 or behaviors:4). Everything within flex_param[[1]] are grouped within OR conditions, but different indices (flex_param[[1]] and flex_param[[2]]) are separated by AND conditions.

flex_param <- list(list("interests" = 1, "behaviors" = 3), list("behaviors" = c(2,4)))

int_music_id <- interests_df %>% filter(name == "Music (entertainment & media)") %>% pull(id)
beh_comm_id  <- behaviors_df %>% filter(name == "Commuters") %>% pull(id)

## OR CONDITION
query_fb_marketing_api(location_unit_type = "countries",
                       location_keys      = "US",
                       flex_target        = list("interests" = int_music_id,
                                                 "behaviors" = beh_comm_id),
                       version            = VERSION, 
                       creation_act       = CREATION_ACT, 
                       token              = TOKEN)
#>   estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound
#> 1    191099644                184300000                216800000
#>   location_unit_type location_types location_keys gender age_min age_max
#> 1          countries home or recent            US 1 or 2      18      65
#>                                            flex_target   api_call_time_utc
#> 1 (interests:6003020834693 or behaviors:6013516370183) 2024-05-06 17:01:50

## AND CONDITION
query_fb_marketing_api(location_unit_type = "countries",
                       location_keys      = "US",
                       flex_target        = list(list("interests" = int_music_id),
                                                 list("behaviors" = beh_comm_id)),
                       version            = VERSION, 
                       creation_act       = CREATION_ACT, 
                       token              = TOKEN)
#>   estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound
#> 1     18508523                 17400000                 20500000
#>   location_unit_type location_types location_keys gender age_min age_max
#> 1          countries home or recent            US 1 or 2      18      65
#>                                           flex_target   api_call_time_utc
#> 1 interests:6003020834693 and behaviors:6013516370183 2024-05-06 17:01:50

## AND and OR CONDITION
query_fb_marketing_api(location_unit_type = "countries",
                       location_keys      = "US",
                       flex_target        = list(list("interests" = int_music_id),
                                                 list("behaviors" = c(beh_comm_id, beh_freqtrvl_id))),
                       version            = VERSION, 
                       creation_act       = CREATION_ACT, 
                       token              = TOKEN)
#>   estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound
#> 1     95506433                 90000000                105900000
#>   location_unit_type location_types location_keys gender age_min age_max
#> 1          countries home or recent            US 1 or 2      18      65
#>                                                                        flex_target
#> 1 interests:6003020834693 and (behaviors:6013516370183 or behaviors:6002714895372)
#>     api_call_time_utc
#> 1 2024-05-06 17:01:51

Excluding Categories

Many parameters come with an alternate input that starts with excl_ to exclude types of users. For example, there are both behaviors and interests parameters, as well as excl_behaviors and excl_interests parameters. The below code shows an example querying users who likely commute to work and are not tagged as interested in music.


beh_comm_id  <- behaviors_df %>% filter(name == "Commuters") %>% pull(id)
int_music_id <- interests_df %>% filter(name == "Music (entertainment & media)") %>% pull(id)

# Like to commute
query_fb_marketing_api(location_unit_type = "countries",
                       location_keys      = "US",
                       behaviors          = beh_comm_id,
                       version            = VERSION, 
                       creation_act       = CREATION_ACT, 
                       token              = TOKEN)
#>   estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound
#> 1     20968885                 22000000                 25900000
#>   location_unit_type location_types location_keys     behaviors gender age_min
#> 1          countries home or recent            US 6013516370183 1 or 2      18
#>   age_max   api_call_time_utc
#> 1      65 2024-05-06 17:01:52

# Likely commute to work AND NOT interested in music in US
query_fb_marketing_api(location_unit_type = "countries",
                       location_keys      = "US",
                       behaviors          = beh_comm_id,
                       excl_interests     = int_music_id,
                       version            = VERSION, 
                       creation_act       = CREATION_ACT, 
                       token              = TOKEN)
#>   estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound
#> 1      2347682                  4700000                  5600000
#>   location_unit_type location_types location_keys     behaviors excl_interests
#> 1          countries home or recent            US 6013516370183  6003020834693
#>   gender age_min age_max   api_call_time_utc
#> 1 1 or 2      18      65 2024-05-06 17:01:54

Multiple Queries

The function allows making multiple queries within one function call. All parameters in the map_param function will be iterated as separate calls. For example, when location_unit_type = "countries", location_key = map_param("US", "MX") will make one query for the US, and a second query for Mexico. The map_param functions creates an object of the class map_param, which instructs the query_fb_marketing_api() to make separate queries for different items in map_param.

Below shows examples. Assume hat we are using map_param to create separate queries for interests, for interest ID 1 and 2.

Example 1: Simple example, making one query to determining the number of users with an interest in 1, and a separate query to determine the number of users with an interest in 2.

map_param(1, 2)
#> [[1]]
#> [1] 1
#> 
#> [[2]]
#> [1] 2
#> 
#> attr(,"class")
#> [1] "map_param"

Example 2: Note that below will only make one query, querying users with an interest in 1 OR 2. There is only one item: c(1,2) – which the function interprets using an OR condition.

interests_vec <- c(1, 2)

map_param(interests_vec)
#> [[1]]
#> [1] 1 2
#> 
#> attr(,"class")
#> [1] "map_param"

Example 3: To map over a vector, we can use the map_param_vec() function—which creates a separate query for each item in the vector.

interests_vec <- c(1, 2)

map_param_vec(interests_vec)
#> [1] 1 2
#> attr(,"class")
#> [1] "map_param"

Simple Examples

Below we show simple examples using map_param.

## Number of Users in US or Mexico, as separate queries
df_out <- query_fb_marketing_api(location_unit_type = "countries",
                                 location_key       = map_param("US", "MX"),
                                 version            = VERSION, 
                                 creation_act       = CREATION_ACT, 
                                 token              = TOKEN)

df_out %>% 
  kable() %>% 
  kable_styling() %>% 
  scroll_box(width = "100%")
estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound location_unit_type location_types location_keys gender age_min age_max api_call_time_utc
219374690 234900000 276400000 countries home or recent US 1 or 2 18 65 2024-05-06 17:01:55
88830897 95600000 112400000 countries home or recent MX 1 or 2 18 65 2024-05-06 17:01:56

## Same query as above, but using a pre-defined vector of countries
# Because we use a vector, we need to use map_param_vec instead of map_param
countries_vec <- c("US", "MX")
df_out <- query_fb_marketing_api(location_unit_type = "countries",
                                 location_key       = map_param_vec(countries_vec),
                                 version            = VERSION, 
                                 creation_act       = CREATION_ACT, 
                                 token              = TOKEN)

df_out %>% 
  kable() %>% 
  kable_styling() %>% 
  scroll_box(width = "100%")
estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound location_unit_type location_types location_keys gender age_min age_max api_call_time_utc
219374690 234900000 276400000 countries home or recent US 1 or 2 18 65 2024-05-06 17:01:57
88830897 95600000 112400000 countries home or recent MX 1 or 2 18 65 2024-05-06 17:01:57

## Iterate across countries and across behaviors. Use `NA` for not filtering by behavior. The below call will give users for (1) all US, (2) all Mexico, (3) frequent travelers in US, and (4) frequenty travelers in Mexico.
df_out <- query_fb_marketing_api(location_unit_type = "countries",
                                 location_key       = map_param("US", "MX"),
                                 behaviors          = map_param(NA, beh_freqtrvl_id),
                                 version            = VERSION, 
                                 creation_act       = CREATION_ACT, 
                                 token              = TOKEN)

df_out %>% 
  kable() %>% 
  kable_styling() %>% 
  scroll_box(width = "100%")
estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound location_unit_type location_types location_keys gender age_min age_max api_call_time_utc behaviors
219374690 234900000 276400000 countries home or recent US 1 or 2 18 65 2024-05-06 17:01:57 NA
88830897 95600000 112400000 countries home or recent MX 1 or 2 18 65 2024-05-06 17:01:58 NA
110149161 115100000 135400000 countries home or recent US 1 or 2 18 65 2024-05-06 17:01:59 6002714895372
66342947 67800000 79700000 countries home or recent MX 1 or 2 18 65 2024-05-06 17:02:00 6002714895372

## Separate query for number of users in US and Mexico and commuters and frequent travelers. Parameters not in
## map_param are applied across all queries. 
beh_comm_id      <- behaviors_df %>% filter(name == "Commuters") %>% pull(id)
beh_freqtrvl_id  <- behaviors_df %>% filter(name == "Frequent Travelers") %>% pull(id)
beh_sb_id        <- behaviors_df %>% filter(name == "Small business owners") %>% pull(id)
int_music_id     <- interests_df %>% filter(name == "Music (entertainment & media)") %>% pull(id)

df_out <- query_fb_marketing_api(location_unit_type = "countries",
                                 location_key       = map_param("US", "MX"),
                                 behaviors          = map_param(beh_comm_id, beh_freqtrvl_id),
                                 interests          = int_music_id,
                                 version            = VERSION, 
                                 creation_act       = CREATION_ACT, 
                                 token              = TOKEN)

df_out %>% 
  kable() %>% 
  kable_styling() %>% 
  scroll_box(width = "100%")
estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound location_unit_type location_types location_keys interests behaviors gender age_min age_max api_call_time_utc
18508523 17400000 20500000 countries home or recent US 6003020834693 6013516370183 1 or 2 18 65 2024-05-06 17:02:01
10274875 9700000 11400000 countries home or recent MX 6003020834693 6013516370183 1 or 2 18 65 2024-05-06 17:02:01
187777990 178600000 210100000 countries home or recent US 6003020834693 NA 1 or 2 18 65 2024-05-06 17:02:02
78563650 74900000 88100000 countries home or recent MX 6003020834693 NA 1 or 2 18 65 2024-05-06 17:02:02

And/Or Conditions

And/or conditions work as before: vectors c() specify OR conditions, while lists list() specify and conditions.


beh_freqtrvl_id  <- behaviors_df %>% filter(name == "Frequent travellers") %>% pull(id)
beh_comm_id      <- behaviors_df %>% filter(name == "Commuters") %>% pull(id)
beh_sb_id        <- behaviors_df %>% filter(name == "Small business owners") %>% pull(id)

df_out <- query_fb_marketing_api(
  location_unit_type = "countries",
  location_key       = "US",
  behaviors          = map_param(
    # Commuters
    beh_comm_id, 
    
    # Frequent Travelers
    beh_freqtrvl_id, 
    
    # Commuters OR Frequent Travelers
    c(beh_comm_id, beh_freqtrvl_id),
    
    # Commuters AND Frequent Travelers
    list(beh_comm_id, beh_freqtrvl_id),
    
    # Commuters AND (Frequent Travelers OR Small Business Owners)
    list(beh_comm_id, c(beh_freqtrvl_id, beh_sb_id))
  ),
  
  version            = VERSION, 
  creation_act       = CREATION_ACT, 
  token              = TOKEN)

df_out %>% 
  kable() %>% 
  kable_styling() %>% 
  scroll_box(width = "100%")
estimate_dau estimate_mau_lower_bound estimate_mau_upper_bound location_unit_type location_types location_keys behaviors gender age_min age_max api_call_time_utc
20968885 22000000 25900000 countries home or recent US 6013516370183 1 or 2 18 65 2024-05-06 17:02:03
110149161 115100000 135400000 countries home or recent US 6002714895372 1 or 2 18 65 2024-05-06 17:02:04
110796644 116200000 136700000 countries home or recent US 6013516370183 or 6002714895372 1 or 2 18 65 2024-05-06 17:02:05
20053536 20600000 24200000 countries home or recent US 6013516370183 and 6002714895372 1 or 2 18 65 2024-05-06 17:02:05
20047486 20600000 24200000 countries home or recent US 6013516370183 and (6002714895372 or 6002714898572) 1 or 2 18 65 2024-05-06 17:02:06