library(povcalnetR) library(ggplot2) library(tidyr) library(ggthemes) library(forcats) library(scales) library(dplyr) library(purrr)
df <- povcalnet_wb() %>% filter(year > 1989, regioncode == "WLD") %>% mutate( poor_pop = round(headcount * population, 0), headcount = round(headcount, 3) ) headcount_col <- "#E69F00" ggplot(df, aes(x = year)) + geom_text(aes(label = headcount * 100, y = headcount), vjust = 1, nudge_y = -0.02, color = headcount_col) + geom_text(aes(label = poor_pop, y = poor_pop / 5000), vjust = 0, nudge_y = 0.02) + geom_line(aes(y = headcount), color = headcount_col) + geom_line(aes(y = poor_pop / 5000)) + geom_point(aes(y = headcount), color = headcount_col) + geom_point(aes(y = poor_pop / 5000)) + scale_y_continuous( labels = scales::percent, limits = c(0, 0.5), breaks = c(0, 0.1, 0.2, 0.3, 0.4), sec.axis = sec_axis(~.*5000, name = "Number of poor (million)", breaks = c(0, 500, 1000, 1500, 2000))) + labs( y = "Poverty rate (%)", x = "" ) + theme_classic()
df <- povcalnet_wb() %>% filter(year > 1989) %>% mutate( poor_pop = round(headcount * population, 0), headcount = round(headcount, 3) ) regions <- df %>% filter(regioncode != "WLD") %>% mutate( regiontitle = fct_relevel(regiontitle, c("Other high Income", "Europe and Central Asia", "Middle East and North Africa", "Latin America and the Caribbean", "East Asia and Pacific", "South Asia", "Sub-Saharan Africa" )) ) world <- df %>% filter(regioncode == "WLD") ggplot(regions, aes(y = poor_pop, x = year, fill = regiontitle)) + geom_area() + scale_y_continuous( limits = c(0, 2000), breaks = c(0, 500, 1000, 1500, 2000) ) + scale_fill_tableau(palette = "Tableau 10") + labs( y = "Number of poor (million)", x = "" ) + theme_classic() + theme( legend.position = "bottom" ) + geom_line(data = world, size = rel(1.5), alpha =.5, linetype = "longdash")
df <- povcalnet(country = c("ARG", "GHA", "THA"), coverage = "all") %>% filter(year > 1989) %>% select(countrycode:isinterpolated, gini) ggplot(df, aes(x = year, y = gini, color = countryname)) + geom_line() + geom_point(data = df[df$isinterpolated == 0, ]) + scale_y_continuous( limits = c(0.35, 0.55), breaks = c(0.35, 0.40, 0.45, 0.50, 0.55) ) + scale_color_colorblind() + labs( y = "Gini Index", x = "" ) + theme_classic() + theme( legend.position = "bottom" )
poverty_lines <- c(1.9, 3.2, 5.5, 15) df <- map_dfr(poverty_lines, povcalnet_wb) out <- df %>% filter(year >= 1990, regioncode %in% c("SSA", "EAP")) %>% select(povertyline, regioncode, regiontitle, year, headcount) %>% mutate( povertyline = round(povertyline * 100, 1), headcount = headcount * 100 ) %>% pivot_wider(names_from = povertyline, names_prefix = "headcount", values_from = headcount) %>% mutate( percentage_0 = headcount190, percentage_1 = headcount320 - headcount190, percentage_2 = headcount550 - headcount320, percentage_3 = headcount1500 - headcount550, percentage_4 = 100 - headcount1500 ) %>% select(regioncode, regiontitle, year, starts_with("percentage_")) %>% pivot_longer(cols = starts_with("percentage_"), names_to = "income_category", values_to = "percentage") %>% mutate( income_category = recode(income_category, percentage_0 = "Poor IPL (<$1.9)", percentage_1 = "Poor LMIC ($1.9-$3.2)", percentage_2 = "Poor UMIC ($3.2-$5.5)", percentage_3 = "$5.5-$15", percentage_4 = "Middle class (>$15)"), income_category = as_factor(income_category), income_category = fct_relevel(income_category, rev) ) ggplot(out[out$regioncode == "EAP",], aes(x = year, y = percentage, fill = income_category)) + geom_bar(stat = "identity") + geom_text(aes(label = round(percentage, 1)), position = position_stack(0.5), size = rel(2.9)) + scale_fill_manual(values = c("#a7b6ba", "#e6a14a", "#859a6a", "#ad6e72", "#5d7a96")) + scale_y_continuous(breaks = c(0, 20, 40, 60, 80, 100)) + scale_x_continuous(breaks = unique(out$year)) + labs( title = "Distribution of income in East Asia and Pacific over time", y = "Population share in each income category (%)", x = "" ) + coord_cartesian(ylim = c(0, 105), expand = FALSE) + guides(fill = guide_legend(reverse = TRUE)) + theme_classic(base_size = 14) + theme(plot.title = element_text(face = "bold", size = rel(1.2)), axis.text.x = element_text(angle = 45, margin = margin(t = 10)), axis.line.y = element_blank(), axis.line.x = element_line(colour="black"), axis.ticks = element_blank(), panel.grid.major.y = element_line(colour="#f0f0f0"), legend.position = "bottom", legend.direction = "horizontal", legend.key.size= unit(0.5, "cm"), legend.margin = unit(0, "cm"), legend.title = element_blank(), plot.margin=unit(c(10,5,5,5),"mm"), strip.background=element_rect(colour="#f0f0f0",fill="#f0f0f0"), strip.text = element_text(face="bold") )
ggplot(out[out$regioncode == "SSA",], aes(x = year, y = percentage, fill = income_category)) + geom_bar(stat = "identity") + geom_text(aes(label = round(percentage, 1)), position = position_stack(0.5), size = rel(2.9)) + scale_fill_manual(values = c("#a7b6ba", "#e6a14a", "#859a6a", "#ad6e72", "#5d7a96")) + scale_y_continuous(breaks = c(0, 20, 40, 60, 80, 100)) + scale_x_continuous(breaks = unique(out$year)) + labs( title = "Distribution of income in Sub-Saharan Africa over time\n", y = "Population share in each income category (%)", x = "" ) + coord_cartesian(ylim = c(0, 105), expand = FALSE) + guides(fill = guide_legend(reverse = TRUE)) + theme_classic(base_size = 14) + theme(plot.title = element_text(face = "bold", size = rel(1.2)), axis.text.x = element_text(angle = 45, margin = margin(t = 10)), axis.line.y = element_blank(), axis.line.x = element_line(colour="black"), axis.ticks = element_blank(), panel.grid.major.y = element_line(colour="#f0f0f0"), legend.position = "bottom", legend.direction = "horizontal", legend.key.size= unit(0.5, "cm"), legend.margin = unit(0, "cm"), legend.title = element_blank(), plot.margin=unit(c(10,5,5,5),"mm"), strip.background=element_rect(colour="#f0f0f0",fill="#f0f0f0"), strip.text = element_text(face="bold") )