get_aux()
Get an auxiliary dataset. If no table is specified a
vector with possible inputs will be returned.
get_countries()
Returns a table countries with their full names, ISO
codes, and associated region code
get_aux(
table = NULL,
version = NULL,
ppp_version = NULL,
release_version = NULL,
api_version = "v1",
format = c("rds", "json", "csv"),
simplify = TRUE,
server = NULL,
assign_tb = FALSE,
force = FALSE
)
get_countries(
version = NULL,
ppp_version = NULL,
release_version = NULL,
api_version = "v1",
format = c("rds", "json", "csv"),
server = NULL
)
get_regions(
version = NULL,
ppp_version = NULL,
release_version = NULL,
api_version = "v1",
format = c("rds", "json", "csv"),
server = NULL
)
get_cpi(
version = NULL,
ppp_version = NULL,
release_version = NULL,
api_version = "v1",
format = c("rds", "json", "csv"),
server = NULL
)
get_dictionary(
version = NULL,
ppp_version = NULL,
release_version = NULL,
api_version = "v1",
format = c("rds", "json", "csv"),
server = NULL
)
get_gdp(
version = NULL,
ppp_version = NULL,
release_version = NULL,
api_version = "v1",
format = c("rds", "json", "csv"),
server = NULL
)
get_incgrp_coverage(
version = NULL,
ppp_version = NULL,
release_version = NULL,
api_version = "v1",
format = c("rds", "json", "csv"),
server = NULL
)
get_interpolated_means(
version = NULL,
ppp_version = NULL,
release_version = NULL,
api_version = "v1",
format = c("rds", "json", "csv"),
server = NULL
)
get_hfce(
version = NULL,
ppp_version = NULL,
release_version = NULL,
api_version = "v1",
format = c("rds", "json", "csv"),
server = NULL
)
get_pop(
version = NULL,
ppp_version = NULL,
release_version = NULL,
api_version = "v1",
format = c("rds", "json", "csv"),
server = NULL
)
get_pop_region(
version = NULL,
ppp_version = NULL,
release_version = NULL,
api_version = "v1",
format = c("rds", "json", "csv"),
server = NULL
)
get_ppp(
version = NULL,
ppp_version = NULL,
release_version = NULL,
api_version = "v1",
format = c("rds", "json", "csv"),
server = NULL
)
get_region_coverage(
version = NULL,
ppp_version = NULL,
release_version = NULL,
api_version = "v1",
format = c("rds", "json", "csv"),
server = NULL
)
get_survey_means(
version = NULL,
ppp_version = NULL,
release_version = NULL,
api_version = "v1",
format = c("rds", "json", "csv"),
server = NULL
)
Aux table
character: Data version. See get_versions()
ppp year to be used
date when the data was published in YYYYMMDD format
character: API version
character: Response format either of c("rds", "json", "csv")
logical: If TRUE (the default) the response is returned as a
tibble
character: Server. For WB internal use only
assigns table to specified name to the .pip
environment.
If FALSE
no assignment will performed. If TRUE
, the table will be
assigned to exactly the same name as the one of the desired table. If
character, the table will be assigned to that name.
logical: force replacement. Default is FALSE
If simplify = FALSE
, it returns a list of class "pip_api". If
simplify = TRUE
, it returns a tibble with the requested data. This is the
default. Only for get_aux()
, If assign_tb = TRUE
or character, it
returns TRUE when data was assign properly to .pip env. FALSE, if it was
not assigned.
get_countries()
: Returns a table countries with their full names, ISO
codes, and associated region code
get_regions()
: Returns a table regional grouping used for computing
aggregate poverty statistics.
get_cpi()
: Returns a table of Consumer Price Index (CPI) values used
for poverty and inequality computations. statistics
get_dictionary()
: Returns a data dictionary with a description of all
variables available through the PIP API.
get_gdp()
: Returns a table of Growth Domestic Product (GDP) values
used for poverty and inequality statistics.
get_incgrp_coverage()
: Returns a table of survey coverage for low and
lower-middle income countries. If this coverage is less than 50%, World
level aggregate statistics will not be computed.
get_interpolated_means()
: Returns a table of key information and statistics for all
years for which poverty and inequality statistics are either available
(household survey exists) or extra- / interpolated. Please see
get_dictionary
for more information about each variable
available in this table.
get_hfce()
: Returns a table of Household Final Consumption
Expenditure (HFCE) values used for poverty and inequality computations.
get_pop()
: Returns a table of population values used for poverty and
inequality computations.
get_pop_region()
: Returns a table of total population by region-year. These
values are used for the computation of regional aggregate poverty
statistics.
get_ppp()
: Returns a table of Purchasing Power Parity (PPP) values
used for poverty and inequality computations.
get_region_coverage()
: Return a table of regional survey coverage: Percentage of
available surveys for a specific region-year.
get_survey_means()
: Returns a table of all available surveys and associated
key statistics. Please see get_dictionary
for more
information about each variable available in this table.
if (FALSE) {
# Get list of tables
x <- get_aux()
# Get GDP data
df <- get_aux("gdp")
# Get countries
df <- get_aux("countries")
# Display auxiliary tables
get_aux()
# Display and assign to .pip env the selected auxiliary table
get_aux(assign_tb = TRUE)
# Bind gdp table to "gdp" in .pip env
get_aux("gdp", assign_tb = TRUE)
# Bind gdp table to "new_name" in .pip env
get_aux("gdp", assign_tb = "new_name")
}
if (FALSE) {
# Short hand to get countries
get_countries()
}
if (FALSE) {
# Short hand to get regions
get_regions()
}
if (FALSE) {
# Short hand to get cpi
get_cpi()
}
if (FALSE) {
# Short hand to get dictionary
get_dictionary()
}
if (FALSE) {
# Short hand to get gdp
get_gdp()
}
if (FALSE) {
# Short hand to get incgrp_coverage
get_incgrp_coverage()
}
if (FALSE) {
# Short hand to get interpolated_means
get_interpolated_means()
}
if (FALSE) {
# Short hand to get hfce
get_hfce()
}
if (FALSE) {
# Short hand to get pop
get_pop()
}
if (FALSE) {
# Short hand to get pop_region
get_pop_region()
}
if (FALSE) {
# Short hand to get ppp
get_ppp()
}
if (FALSE) {
# Short hand to get region_coverage
get_region_coverage()
}
if (FALSE) {
# Short hand to get survey_means
get_survey_means()
}