Overview

The get_cp() and get_cp_ki() functions provide country profile data, also available in PIP’s Country Profile page. This dataset comes from the Global Monitoring Indicators (GMI), a set of harmonized indicators produced from the Global Monitoring Database (GMD) 1

The country profile variables shown by the country profile page (and returned by default by get_cp_ki and get_cp()) are for the latest available year or comparable spell of years, including a default poverty line ($2.15), and a default PPP version (2017).

Country Profile Key Indicators

Overview

get_cp_ki() returns the key indicators listed at the beginning of the country profile page. These indicators are:

  • headcount: Poverty rate at the default international poverty line (% population).
  • headcount_national: Poverty rate at the national poverty line (% population).
  • mpm_headcount: Multidimensional poverty headcount ratio (% population).
  • share_below_40: Annualized growth in per capita mean consumption or income (%) for the bottom 40%.
  • share_total: Annualized growth in per capita mean consumption or income (%) (total).
  • pop: Population, total (millions).
  • gni_pc: GNI per capita, Atlas method (current US$).
  • gdp_growthGDP growth (annual %).

Usage

get_cp_ki works for single countries only, and returns a data frame with the requested data.

get_cp_ki(country = "IDN")
#> Pruning cache
#> Error in get(paste0(generic, ".", class), envir = get_method_env()) : 
#>   object 'type_sum.accel' not found
#>   country_code reporting_year poverty_line headcount headcount_national
#> 1          IDN           2023         2.15    0.0182                9.4
#>   mpm_headcount reporting_pop  gni latest_gni gdp_growth latest_gdp year_range
#> 1        0.0214      277.5341 4870       TRUE     5.0481       TRUE  2018-2023
#>   share_below_40 share_total
#> 1         2.7768      1.8967
# Note: get_cp_ki(country = c("IDN", "ITA")) # this won't work!

As a default, the function returns the latest available year or comparable spell of years, with poverty metrics calculated at the latest international poverty line of $2.15 and the default PPP version of 2017. The user can change these by passing the respective arguments to the function.

get_cp_ki(country = "IDN", povline = 1.9)
#>   country_code reporting_year poverty_line headcount headcount_national
#> 1          IDN           2023          1.9    0.0092                9.4
#>   mpm_headcount reporting_pop  gni latest_gni gdp_growth latest_gdp year_range
#> 1        0.0214      277.5341 4870       TRUE     5.0481       TRUE  2018-2023
#>   share_below_40 share_total
#> 1         2.7768      1.8967

Country Profile Poverty Indicators

Overview

get_cp() returns a data frame with the data used to produce the country profile page poverty and inequality metrics visualizations. There are 47 variables included within the following categories:

  • poverty headcounts: poverty headcounts at different poverty lines, calculated for all years available.
  • inequality metrics: Gini and Thiel Indexes, calculated for all years available.
  • shares of given demographic in bottom 40%/top 60%: calculated for the latest available year.
  • multidimensional poverty indexes: calculated for all years available.

Usage

get_cp() default returns all data available (country = all) for the default poverty line ($2.15) and PPP version (2017). If the user specifies ppp_version = 2011, the default poverty line will be $1.9.

get_cp() # all countries, default poverty line (2.15) and PPP version (2017)
get_cp(ppp_version = 2011) # all countries, poverty line 1.9.

The user can also specify a single country or a list of countries. The returned object will be a data frame with the requested data.

get_cp(country = "IDN") # single country
#> Saving response to cache "d050b3be3c6b185690c579f4db697446"
#> # A tibble: 31 × 47
#>    country_code  year poverty_line headcount welfare_time survey_coverage
#>    <chr>        <dbl>        <dbl>     <dbl>        <dbl> <chr>          
#>  1 IDN           1984           NA        NA         1984 N              
#>  2 IDN           1987           NA        NA         1987 N              
#>  3 IDN           1990           NA        NA         1990 N              
#>  4 IDN           1993           NA        NA         1993 N              
#>  5 IDN           1996           NA        NA         1996 N              
#>  6 IDN           1998           NA        NA         1998 N              
#>  7 IDN           1999           NA        NA         1999 N              
#>  8 IDN           2000           NA        NA         2000 N              
#>  9 IDN           2001           NA        NA         2001 N              
#> 10 IDN           2002           NA        NA         2002 N              
#> # ℹ 21 more rows
#> # ℹ 41 more variables: is_interpolated <chr>, survey_acronym <chr>,
#> #   survey_comparability <dbl>, comparable_spell <chr>, welfare_type <chr>,
#> #   headcount_ipl <dbl>, headcount_lmicpl <dbl>, headcount_umicpl <dbl>,
#> #   headcount_national <dbl>, headcount_national_footnote <dbl>, gini <dbl>,
#> #   theil <dbl>, share_b40_female <dbl>, share_t60_female <dbl>,
#> #   share_b40_male <dbl>, share_t60_male <dbl>, share_b40_rural <dbl>, …

  1. The Global Monitoring Database (GMD) is the World Bank’s repository of multi-topic income and expenditure household surveys used to monitor global poverty and shared prosperity. The data comes from household surveys collected by the national statistical office in each country. It is then compiled, processed, and harmonized, so that levels and trends in poverty and other key socio-demographic attributes can be compared across and within countries over time.↩︎