Skip to main content
Ctrl+K
Data Goods Template - Home Data Goods Template - Home

Introduction to Data Goods

  • Introduction to Data Goods

Datasets

  • Datasets: Introduction
    • Existing Data
    • Digitizing Government Data
    • New Data Collection

Reusable Data Products

  • Data Products: Examples
    • Nighttime Lights Trends
      • Nighttime Lights Trends in Gaza and West Bank
      • Nighttime Lights Trends in Jordan
    • Estimating Damage to Buildings and Infrastructure
      • Visualizing Damage Estimation in Gaza
    • Business Activity Trends
      • Analysing business activity trends in Turkiye
    • Movement Trends
      • Estimating Activity through Mobility Data
      • Estimating Activity based on Visits to Points of Interest through Mobility Data
    • Tree Cover Loss Analysis
      • Tree Cover Loss Analysis
    • Humanitarian Assistance Survey Data

Insights and Indicators

  • Insights, Indicators, and Data Sources: Introduction

Training and Dissemination

  • Training and Dissemination

Acknowledgements

  • Data Goods Team and Acknowedgements

Data Good Examples

  • Data Good Example: Water Global Practice

Additional Resources

  • Development Data Partnership
  • World Bank Data Lab
  • World Bank DEC
  • World Bank DIME
  • Repository
  • Suggest edit
  • Open issue
  • .ipynb

Nighttime Lights Trends in Jordan

Contents

  • Data
    • Define Region of Interest
    • Black Marble
  • Methodology
    • Time Series Generation
      • Weekly
      • Monthly
  • Findings
    • Percent Change in NTL Radiance
      • Baseline Comparison
      • Week over Week Comparison
    • National Average Weekly Radiance
  • Limitations

Nighttime Lights Trends in Jordan#

The purpose of this notebook is to conduct an examination of the spatial and temporal distribution of artificial lights during the night across various regions in Jordan. The dataset utilized is derived from NASA’s Black Marble and Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite.

Data#

Define Region of Interest#

Define region of interest for where we want to download nighttime lights data

Show code cell source Hide code cell source
ROI = GADMDownloader(version="4.0").get_shape_data_by_country_name(
    country_name="Jordan", ad_level=2
)
ROI.explore()
Make this Notebook Trusted to load map: File -> Trust Notebook

Black Marble#

NASA’s Black Marble VIIRS (Visible Infrared Imaging Radiometer Suite) Nighttime Lights dataset represents a remarkable advancement in our ability to monitor and understand nocturnal light emissions on a global scale. By utilizing cutting-edge satellite technology and image processing techniques, the Black Marble VIIRS dataset offers a comprehensive and high-resolution view of the Earth’s nighttime illumination patterns.

dates = (
    pd.date_range("2022-01-01", "2023-12-31", freq="D").strftime("%Y-%m-%d").tolist()
)
_ = bm_extract(
    roi_sf=ROI,
    product_id="VNP46A2",
    date=dates,
    bearer=os.environ.get("BLACKMARBLE_TOKEN"),
    output_location_type="file",
    file_dir="data",
    file_prefix="jor_",
    aggregation_fun=["count", "mean", "min", "max", "median", "sum"],
    quiet=True,
)

Now that the data was acquired, let’s read the data files,

Show code cell source Hide code cell source
VNP46A2 = dd.read_csv(
    "data/jor_VNP46A2*.csv",
    parse_dates=["date"],
).compute()
VNP46A2
ID_0 COUNTRY NAME_1 NL_NAME_1 ID_2 NAME_2 VARNAME_2 NL_NAME_2 TYPE_2 ENGTYPE_2 CC_2 HASC_2 ntl_min ntl_max ntl_mean ntl_count ntl_sum ntl_median date
0 JOR Jordan Ajlun JOR.1.1_1 Ajloun Ajlun Nahia Sub-Province JO.AJ.AJ 26.0 28.0 27.500000 4 110.0 28.0 2022-01-01
1 JOR Jordan Ajlun JOR.1.2_1 Kofranjah Nahia Sub-Province JO.AJ.KF NaN NaN NaN 0 NaN NaN 2022-01-01
2 JOR Jordan Amman JOR.2.1_1 Amman Nahia Sub-Province JO.AM.AM 21.0 1610.0 305.159483 928 283188.0 316.0 2022-01-01
3 JOR Jordan Amman JOR.2.2_1 Jizeh Al-Jiza Nahia Sub-Province JO.AM.JI 0.0 1072.0 7.873661 20532 161662.0 2.0 2022-01-01
4 JOR Jordan Amman JOR.2.3_1 Mowaqqar Al-Mwwqqar Nahia Sub-Province JO.AM.MO 3.0 19.0 12.387755 49 607.0 12.0 2022-01-01
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
47 JOR Jordan Tafilah JOR.11.2_1 Hesa Al-Hasa Nahia Sub-Province JO.AT.HE 4.0 113.0 14.097600 625 8811.0 11.0 2023-11-14
48 JOR Jordan Tafilah JOR.11.3_1 Tafileh Al-Tafila Nahia Sub-Province JO.AT.AT 8.0 486.0 31.221471 1332 41587.0 14.0 2023-11-14
49 JOR Jordan Zarqa JOR.12.1_1 Azraq Al-Azraq Nahia Sub-Province JO.AZ.ZQ 3.0 110.0 8.661039 3791 32834.0 8.0 2023-11-14
50 JOR Jordan Zarqa JOR.12.2_1 Bierain Birin Nahia Sub-Province JO.AZ.BR 23.0 799.0 123.349862 726 89552.0 68.0 2023-11-14
51 JOR Jordan Zarqa JOR.12.3_1 Zarqa Az-Zarqa Nahia Sub-Province JO.AZ.AZ 12.0 1625.0 155.380354 2942 457129.0 53.0 2023-11-14

34424 rows × 19 columns

The latest update date is:

'14 November 2023 (Week 46)'

Important

The VNP46A2 Daily Moonlight-adjusted Nighttime Lights (NTL) Product is available daily. However, due data quality, cloud cover or other factors, the data may not be available always at a specific location.

Methodology#

Creating a time series of weekly radiance using NASA’s Black Marble data involves several steps, including data acquisition, pre-processing, zonal statistics calculation, and time series generation. Below is a general methodology for this process.

Time Series Generation#

Organize the zonal statistics results in a tabular format, where each columnn corresponds to a specific zone, and rows represent the daily radiance values. Next, we aggregate the data on a weekly basis, computing the desired statistical metric (e.g., mean radiance) for each zone for each week. Finally, we will visualize the time series data to observe trends, patterns, and anomalies over time.

Weekly#

In this step, we compute a weekly aggregation of the zonal statistics by for each second-level administrative division and for each week. In this case, we W-SUN and mean as aggregate function.

Show code cell source Hide code cell source
JO_2 = (
    VNP46A2.pivot_table(index="date", columns=["NAME_2"], values=[VAR]).resample("W").mean()
)

JO_1 = (
    VNP46A2.pivot_table(index="date", columns=["NAME_1"], values=[VAR], aggfunc="mean")
    .resample("W-SUN", label="right")
    .mean()
)
JO_1
ntl_mean
NAME_1 Ajlun Amman Aqaba Balqa Irbid Jarash Karak Ma`an Madaba Mafraq Tafilah Zarqa
date
2022-01-02 24.449405 100.560509 7.354693 69.469869 34.211491 26.072344 32.249152 14.246122 35.418149 21.112632 17.448854 27.433938
2022-01-09 75.069969 202.476405 8.505361 134.089928 106.841876 71.384097 27.261286 15.193569 25.749898 46.622935 21.710452 81.786189
2022-01-16 73.258399 146.198091 7.302361 126.774726 109.848380 70.581380 22.452533 14.715774 26.129812 41.547182 10.761759 68.849111
2022-01-23 66.562622 206.676547 10.440221 103.589737 101.892195 61.862660 28.897436 15.901350 22.496525 46.517104 20.465860 82.027899
2022-01-30 50.736298 131.449640 10.701375 110.010114 92.383724 58.473055 22.605634 13.276547 19.787800 32.544107 15.558135 51.250123
... ... ... ... ... ... ... ... ... ... ... ... ...
2023-10-22 77.643016 219.769259 15.844977 131.277761 182.848500 88.222131 42.819114 23.521066 38.187475 60.871674 31.162284 105.373608
2023-10-29 97.636910 246.901782 14.079673 149.398513 215.814159 93.072254 43.123620 24.703762 47.732346 55.785789 31.345070 107.245041
2023-11-05 86.800853 217.892463 14.177184 149.693422 193.366805 93.819495 48.715216 22.026993 57.222549 67.613157 28.489876 109.128964
2023-11-12 79.158015 214.887956 13.880656 136.602316 167.970792 87.035402 43.076239 22.074731 51.916024 56.153415 31.205813 85.198662
2023-11-19 72.628906 159.532351 14.907425 96.564415 164.324232 110.157426 27.818617 21.802230 36.411724 51.083220 21.405399 72.596527

99 rows × 12 columns

Now, we visualize,

Show code cell source Hide code cell source
p = figure(
    title="Jordan: Weekly Nighttime Lights (2022-2023)",
    width=800,
    height=700,
    x_axis_label="Date",
    x_axis_type="datetime",
    y_axis_label=r"Radiance [nW $$cm^{-2}$$ $$sr^{-1}$$]",
    tools="pan,wheel_zoom,box_zoom,reset,save,box_select",
)
p.add_layout(
    Title(
        text=f"Weekly Adm2 Radiance Average",
        text_font_size="12pt",
        text_font_style="italic",
    ),
    "above",
)
p.add_layout(
    Title(
        text=f"Data Source: NASA Black Marble. Creation date: {datetime.today().strftime('%d %B %Y')}. Feedback: datalab@worldbank.org.",
        text_font_size="10pt",
        text_font_style="italic",
    ),
    "below",
)
p.add_layout(Legend(), "right")

p.add_tools(
    HoverTool(
        tooltips=[
            ("Week", "@x{%W} (@x{%F})"),
            ("Radiance", "@y{0.00}"),
        ],
        formatters={"@x": "datetime"},
    )
)
renderers = []
for column, color in zip(data.columns, cc.b_glasbey_category10):
    try:
        r = p.line(
            data.index,
            data[column],
            legend_label=column[1],
            line_color=color,
            line_width=2,
        )
        r.muted = True
        renderers.append(r)
    except:
        pass

renderers[0].muted = False

p.legend.location = "bottom_left"
p.legend.click_policy = "mute"
p.title.text_font_size = "16pt"
p.sizing_mode = "scale_both"

output_notebook()
show(p)
Loading BokehJS ...
../../_images/logo.png

Fig. 12 Weekly average zonal statistics (i.e., mean) for each second-level administrative division derived from NASA Black Marble.#

Monthly#

In this step, we compute a monthy aggregation of the zonal statistics by for each second-level administrative division and for each month. Additionaly, we add the VNP46A3 monthly composite, when available.

BokehJS 3.3.0 successfully loaded.

Findings#

Percent Change in NTL Radiance#

Baseline Comparison#

In this exploratory analysis, we conducted analysis of NTL radiance trends, comparing the observed average radiance levels to a baseline established in the year 2022 for each second-level administrative division.

Show code cell source Hide code cell source
data = 100 * (
    JO_1 / JO_1[(JO_1.index >= "2022-01-01") & (JO_1.index < "2023-01-01")].mean() - 1
)

pd.set_option("display.max_rows", None)
data[data.index >= "2023-01-01"].style.map(
    lambda x: "background-color: #DF4661" if x < 0 else "background-color: white"
)
  ntl_mean
NAME_1 Ajlun Amman Aqaba Balqa Irbid Jarash Karak Ma`an Madaba Mafraq Tafilah Zarqa
date                        
2023-01-01 00:00:00 -7.812806 -11.267915 5.011899 -15.366263 15.477876 -5.492497 -23.348951 -19.963683 -5.625838 -16.988747 -29.436030 -19.148695
2023-01-08 00:00:00 0.310554 -13.267203 8.880067 11.512828 1.741671 -22.658318 -3.788541 -13.015184 -6.751728 -9.967470 -17.992759 -15.567623
2023-01-15 00:00:00 -1.999273 9.707930 7.380476 5.241753 12.862047 2.915058 13.266334 -3.558661 7.062764 -4.378679 -1.982312 7.918166
2023-01-22 00:00:00 0.794651 5.465334 23.692154 -2.033755 27.378690 -0.466225 7.508645 15.741998 -4.404656 8.395354 9.891389 3.479471
2023-01-29 00:00:00 22.966140 -6.304200 3.421145 -3.850306 32.130496 35.272439 5.403164 8.753409 4.319226 -0.158464 9.645681 -8.706205
2023-02-05 00:00:00 -8.475263 -23.819744 14.110618 -18.624443 20.099759 -7.395373 -1.816518 11.146381 15.749054 -13.603969 -7.328799 -12.381948
2023-02-12 00:00:00 16.482285 -7.465935 7.813275 -4.808203 2.618400 -9.076891 -17.564304 0.917458 -4.552297 -5.285133 -19.107876 -4.906531
2023-02-19 00:00:00 0.224380 5.054612 19.637017 0.749978 27.338746 -0.063092 -1.740740 8.707545 6.529947 6.821278 4.719243 3.467270
2023-02-26 00:00:00 5.688326 13.082583 25.490294 7.698806 32.034632 8.092545 18.778270 23.435275 16.031405 14.975504 15.454432 8.446943
2023-03-05 00:00:00 12.107803 13.855799 14.869858 10.190753 41.439059 11.703403 15.785757 17.540018 5.705839 14.346301 15.188396 10.355823
2023-03-12 00:00:00 5.394269 1.948534 1.515720 -0.844330 26.102329 -4.048381 3.092359 0.574206 -4.533436 11.560730 -1.378952 1.780216
2023-03-19 00:00:00 -5.950738 -37.443196 -4.374279 -25.656802 16.850970 -29.256450 -7.043793 -6.737590 -20.492548 -16.573866 -18.564680 -11.080243
2023-03-26 00:00:00 2.840896 -55.335895 -27.086912 -30.515443 -10.117618 54.569092 -22.450259 -44.801891 -32.930745 -45.436535 -48.948417 -40.717521
2023-04-02 00:00:00 -8.075619 7.384276 3.990688 -2.304129 17.187963 -0.575286 0.098759 8.529672 1.515720 -1.971939 -2.010714 11.396500
2023-04-09 00:00:00 2.351525 -10.766051 5.863195 11.087220 42.417099 1.246009 -13.201905 -18.461676 1.678231 -12.909904 -17.918398 -7.619874
2023-04-16 00:00:00 10.366028 28.214882 22.987737 14.594187 26.919998 -5.691435 -6.164979 15.910385 -8.104481 -0.127800 9.183503 18.650822
2023-04-23 00:00:00 19.642708 18.146151 36.312604 -3.720045 46.695450 6.263230 -6.254941 7.651540 -10.296086 14.678273 -7.306255 21.608081
2023-04-30 00:00:00 10.077350 17.930656 40.305952 11.107766 30.947302 -0.160790 13.895862 21.702542 12.969900 18.467915 11.477825 3.682010
2023-05-07 00:00:00 11.571941 16.428437 -5.910608 9.845804 48.207320 9.020242 18.398227 7.148590 17.560376 20.120525 7.684301 17.713424
2023-05-14 00:00:00 8.684018 12.564918 27.959567 7.122437 38.900676 9.215696 18.155957 22.679487 15.283112 18.247007 24.050749 15.901880
2023-05-21 00:00:00 21.066472 -13.502072 16.166015 0.067031 22.959011 0.393036 28.859993 18.384918 23.536352 1.264218 1.886673 6.044839
2023-05-28 00:00:00 23.018605 -11.291191 9.477632 -9.465982 48.959064 4.055497 16.397785 -14.013952 203.154412 30.317643 -10.678348 72.558543
2023-06-04 00:00:00 14.150904 -20.728678 31.509074 3.279296 48.977604 -6.031027 -5.881070 1.002130 10.550384 0.039403 -12.596003 -14.963563
2023-06-11 00:00:00 -0.663030 -24.739753 -11.562115 -7.322258 37.767790 7.792958 -5.210806 8.918531 -2.505512 -7.049062 4.612522 -19.854974
2023-06-18 00:00:00 7.152571 9.210617 22.961072 5.172324 43.171203 7.388784 18.657965 27.151520 12.446165 13.300487 15.613746 14.613685
2023-06-25 00:00:00 16.085599 24.776097 29.811833 18.735093 60.080565 17.613060 35.283201 45.131891 31.217755 27.119625 39.689302 23.620913
2023-07-02 00:00:00 11.861065 26.769801 23.327234 16.212974 61.980412 16.052084 32.077241 32.451992 30.947730 23.972545 29.841410 22.387185
2023-07-09 00:00:00 9.791064 21.502917 -10.434832 14.795023 55.920524 13.380661 24.392512 17.624922 27.290106 19.913178 17.225915 18.597331
2023-07-16 00:00:00 14.899991 24.901712 28.963520 18.009265 63.479834 21.293432 38.085529 36.128461 36.712364 29.972402 34.565019 25.065108
2023-07-23 00:00:00 10.525418 20.998619 14.029224 16.068273 61.017530 16.310987 35.270106 36.295866 29.267635 21.041429 34.688737 16.782252
2023-07-30 00:00:00 8.410279 11.510949 11.666990 10.364857 52.120403 12.221718 27.946143 25.196635 28.491320 12.351011 23.049932 2.021945
2023-08-06 00:00:00 11.626558 26.748466 -0.813060 19.229593 63.169194 18.954469 29.807447 22.621822 36.018049 22.668215 20.130139 21.334769
2023-08-13 00:00:00 8.938028 18.536046 11.621447 16.119576 49.582000 15.776598 33.554970 24.127700 41.303692 21.655611 31.651211 13.782232
2023-08-20 00:00:00 9.727200 5.138653 31.365770 3.660849 -11.293947 5.381467 35.637040 20.826355 28.648537 0.815420 36.698685 22.819132
2023-08-27 00:00:00 14.288512 23.481603 26.747796 17.511957 53.661142 15.887500 46.871775 38.395901 48.068306 26.023789 46.593513 21.804700
2023-09-03 00:00:00 6.786921 16.420124 -1.792705 8.774296 46.005542 5.012247 28.874166 11.159174 34.305456 16.870776 22.083313 12.864210
2023-09-10 00:00:00 9.932847 16.399821 14.885153 15.207731 50.192367 9.713189 34.205157 27.647360 42.889164 20.178395 35.635736 13.883222
2023-09-17 00:00:00 8.217128 14.653434 36.145995 12.121611 48.946089 9.773262 44.768990 38.358748 38.885765 22.621559 47.596291 13.957718
2023-09-24 00:00:00 16.132598 23.016463 34.046969 17.972179 50.974766 15.429908 46.393519 43.962337 48.049915 31.678748 52.680622 21.018734
2023-10-01 00:00:00 9.852405 36.062499 17.722342 12.067878 31.837164 6.651293 52.236428 -1.351363 32.949964 13.746775 61.030612 42.777288
2023-10-08 00:00:00 15.805814 -14.220051 -1.777032 12.616470 7.789635 -8.734124 -2.006238 -11.923738 45.516018 -7.050917 13.365658 -7.437438
2023-10-15 00:00:00 4.469029 38.082293 41.839918 -4.531574 36.478126 1.173103 40.234096 33.533505 28.659335 18.330102 38.775023 -6.411329
2023-10-22 00:00:00 8.547505 13.194416 44.545363 5.866359 45.229534 11.573335 30.330205 41.536058 30.550197 21.512497 50.077795 24.344041
2023-10-29 00:00:00 36.499631 27.169301 28.441421 20.479481 71.412890 17.707220 31.257042 48.652834 63.180913 11.360016 50.958092 26.552388
2023-11-05 00:00:00 21.350465 12.227754 29.330968 20.717306 53.583820 18.652245 48.276399 32.545595 95.624743 34.969898 37.207460 28.775476
2023-11-12 00:00:00 10.665524 10.680251 26.625893 10.160242 33.412743 10.072495 31.112825 32.832857 77.483510 12.093873 50.287429 0.536996
2023-11-19 00:00:00 1.537614 -17.831222 35.992569 -22.127534 30.516420 39.314606 -15.327392 31.193103 24.479499 1.972712 3.088563 -14.333905
../../_images/logo.png

Fig. 13 Percent change compared to a 2022 baseline. Values in red indicate a negative percent change.#

Show code cell source Hide code cell source
p = figure(
    title="Jordan: Percent Change in Nighttime Lights Radiance",
    width=800,
    height=800,
    x_axis_label="Date",
    x_axis_type="datetime",
    y_axis_label="Radiance Percent Change (%)",
    tools="pan,wheel_zoom,box_zoom,reset,save,box_select",
)
p.xaxis.major_label_orientation = math.pi / 4
p.add_layout(
    Title(
        text=f"Percent change (compared to 2022) in NTL radiance for each second-level administrative division",
        text_font_size="12pt",
        text_font_style="italic",
    ),
    "above",
)
p.add_layout(
    Title(
        text=f"Source: NASA Black Marble. Creation date: {datetime.today().strftime('%d %B %Y')}. Feedback: datalab@worldbank.org.",
        text_font_size="10pt",
        text_font_style="italic",
    ),
    "below",
)
p.add_layout(Legend(), "right")
p.renderers.extend(
    [
        Span(
            location=datetime(2023, 10, 7),
            dimension="height",
            line_color="gray",
            line_width=1.5,
            line_dash=(4, 4),
        ),
    ]
)
p.add_tools(
    HoverTool(
        tooltips=[
            ("Week", "@x{%W} (@x{%F})"),
            ("Percent Change", "@y{0.00}% (2022 baseline)"),
        ],
        formatters={"@x": "datetime"},
    )
)
renderers = []
for column, color in zip(data.columns, cc.b_glasbey_category10):
    r = p.line(
        data.index,
        data[column],
        legend_label=str(column[1]),
        line_color=color,
        line_width=2,
    )
    r.visible = False
    renderers.append(r)

renderers[0].visible = True

p.legend.location = "bottom_left"
p.legend.click_policy = "hide"
p.title.text_font_size = "12pt"
p.sizing_mode = "scale_both"

show(p)
../../_images/logo.png

Fig. 14 Percent change in average Nighttime Lights (NTL) radiance over time compared to a 2022 baseline average, with a dashed line indicating October 7th.#

Week over Week Comparison#

In this exploratory analysis, we conducted analysis of NTL radiance trends, comparing the observed average radiance levels week over week (WOW) for each second-level administrative division.

Show code cell source Hide code cell source
p = figure(
    title="Jordan: Percent Change in Nighttime Lights Radiance",
    width=800,
    height=800,
    x_axis_label="Date",
    x_axis_type="datetime",
    y_axis_label="Radiance Percent Change (%)",
    tools="pan,wheel_zoom,box_zoom,reset,save,box_select",
)
p.xaxis.major_label_orientation = math.pi / 4
p.add_layout(
    Title(
        text=f"Percent change week over week in NTL radiance for each second-level administrative division",
        text_font_size="12pt",
        text_font_style="italic",
    ),
    "above",
)
p.add_layout(
    Title(
        text=f"Source: NASA Black Marble. Creation date: {datetime.today().strftime('%d %B %Y')}. Feedback: datalab@worldbank.org.",
        text_font_size="10pt",
        text_font_style="italic",
    ),
    "below",
)
p.add_layout(Legend(), "right")
p.renderers.extend(
    [
        Span(
            location=datetime(2023, 10, 7),
            dimension="height",
            line_color="gray",
            line_width=1.5,
            line_dash=(4, 4),
        ),
    ]
)
p.add_tools(
    HoverTool(
        tooltips=[
            ("Week", "@x{%W} (@x{%F})"),
            ("Percent Change", "@y{0.00}% (WOW)"),
        ],
        formatters={"@x": "datetime"},
    )
)
renderers = []
for column, color in zip(data.columns, cc.b_glasbey_category10):
    r = p.line(
        data.index,
        data[column],
        legend_label=str(column[1]),
        line_color=color,
        line_width=2,
    )
    r.visible = False
    renderers.append(r)

renderers[0].visible = True

p.legend.location = "bottom_left"
p.legend.click_policy = "hide"
p.title.text_font_size = "12pt"
p.sizing_mode = "scale_both"

show(p)
../../_images/logo.png

Fig. 15 Percent change in average Nighttime Lights (NTL) radiance week over week, with a dashed line indicating October 7th.#

National Average Weekly Radiance#

../../_images/57bd3034f918f28fa99db3fe2d217529116e6c419a5f358d3df181d4217f25a2.png

Limitations#

See also

Limitations

previous

Nighttime Lights Trends in Gaza and West Bank

next

Estimating Damage to Buildings and Infrastructure

Contents
  • Data
    • Define Region of Interest
    • Black Marble
  • Methodology
    • Time Series Generation
      • Weekly
      • Monthly
  • Findings
    • Percent Change in NTL Radiance
      • Baseline Comparison
      • Week over Week Comparison
    • National Average Weekly Radiance
  • Limitations

By Development Data Group

Last updated on Feb 11, 2024.

All content (unless otherwise specified) is subject to the Mozilla Public License.